如圖1,直線l和圓c,當(dāng)l從0 開始在平面上繞點(diǎn)O按逆時針方向勻速轉(zhuǎn)動(轉(zhuǎn)動角度不超過900)時,它掃過的圓內(nèi)陰影部分的面積S 是時間t的函數(shù),這個函數(shù)的圖象大致是

 

 

【答案】

D

【解析】解:觀察可知面積S變化情況為“一直增加,先慢后快,過圓心后又變慢”

對應(yīng)的函數(shù)的圖象是變化率先變大再變小,由此知D符合要求

故選D

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知圓O:x2+y2=1,圓C:(x-4)2+(y-4)2=1,由兩圓外一點(diǎn)P(a,b)引兩圓切線PA、PB,切點(diǎn)分別為A、B,如圖,滿足|PA|=|PB|;
(Ⅰ)將兩圓方程相減可得一直線方程l:x+y-4=0,該直線叫做這兩圓的“根軸”,試證點(diǎn)P落在根軸上;
(Ⅱ)求切線長|PA|的最小值;
(Ⅲ)給出定點(diǎn)M(0,2),設(shè)P、Q分別為直線l和圓O上動點(diǎn),求|MP|+|PQ|的最小值及此時點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)A、選修4-1:幾何證明選講 
如圖,PA與⊙O相切于點(diǎn)A,D為PA的中點(diǎn),
過點(diǎn)D引割線交⊙O于B,C兩點(diǎn),求證:∠DPB=∠DCP.
B.選修4-2:矩陣與變換
已知矩陣M=
12
2x
的一個特征值為3,求另一個特征值及其對應(yīng)的一個特征向量.
C.選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,圓C的方程為ρ=2
2
sin(θ+
π
4
)
,以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為
x=t
y=1+2t
(t為參數(shù)),判斷直線l和圓C的位置關(guān)系.
D.選修4-5:不等式選講
求函數(shù)y=
1-x
+
4+2x
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆山東省濟(jì)寧市高二12月質(zhì)檢理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分12分)

如圖,在平面直角坐標(biāo)系xOy中,平行于x軸且過點(diǎn)A(3,2)的入射光線 l1

被直線l:y=x反射.反射光線l2y軸于B點(diǎn),圓C過點(diǎn)A且與l1, l2都相切.

(1)求l2所在直線的方程和圓C的方程;

(2)設(shè)分別是直線l和圓C上的動點(diǎn),求的最小值及此時點(diǎn)的坐標(biāo).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年江蘇省蘇北四市高三第二次調(diào)研數(shù)學(xué)試卷(解析版) 題型:解答題

A、選修4-1:幾何證明選講 
如圖,PA與⊙O相切于點(diǎn)A,D為PA的中點(diǎn),
過點(diǎn)D引割線交⊙O于B,C兩點(diǎn),求證:∠DPB=∠DCP.
B.選修4-2:矩陣與變換
已知矩陣的一個特征值為3,求另一個特征值及其對應(yīng)的一個特征向量.
C.選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,圓C的方程為,以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為(t為參數(shù)),判斷直線l和圓C的位置關(guān)系.
D.選修4-5:不等式選講
求函數(shù)的最大值.

查看答案和解析>>

同步練習(xí)冊答案