20.如圖,三棱錐P-ABC中,PB⊥BA,PC⊥CA,且PC=$\sqrt{3}CA=\sqrt{3}$,則三棱錐P-ABC的外接球體積為$\frac{4π}{3}$.

分析 由已知得PA是三棱錐P-ABC的外接球的直徑,由此能求出三棱錐P-ABC的外接球體積.

解答 解:∵三棱錐P-ABC中,PB⊥BA,PC⊥CA,且PC=$\sqrt{3}CA=\sqrt{3}$,
∴PA是三棱錐P-ABC的外接球的直徑,
PA=$\sqrt{P{C}^{2}+C{A}^{2}}$=2,
∴三棱錐P-ABC的外接球體積:
V=$\frac{4}{3}π(\frac{2}{2})^{3}$=$\frac{4π}{3}$.
故答案為:$\frac{4π}{3}$.

點(diǎn)評(píng) 本題考查三棱錐的外接球的體積的求法,考查推理論證能力、空間思維能力、運(yùn)算求解能力,考查等價(jià)轉(zhuǎn)化思想、數(shù)形結(jié)合思想,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知菱形ABCD的邊長(zhǎng)為2,∠ABC=60°,點(diǎn)E滿足$\overrightarrow{BE}=\frac{1}{2}\overrightarrow{BC}$,則$\overrightarrow{AE}•\overrightarrow{AD}$=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.設(shè)集合U={0,1,2,3,4},A={0,1,3},B={2,3,4},則(∁UA)∩B=(  )
A.{2,4}B.{2,3,4}C.{3}D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知函數(shù)f(x)=x2+m與函數(shù)g(x)=-ln$\frac{1}{x}-3x({x∈[{\frac{1}{2},2}]})$的圖象上恰有兩對(duì)關(guān)于x軸對(duì)稱的點(diǎn),則實(shí)數(shù)m的取值范圍是(  )
A.$[{\frac{5}{4}+ln2,2})$B.$[{2-ln2,\frac{5}{4}+ln2})$C.$({\frac{5}{4}+ln2,2-ln2}]$D.(2-ln2,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)f(x)=(x+1)ex-$\frac{1}{2}{x^2}$-ax(a∈R,e是自然對(duì)數(shù)的底數(shù))在(0,f(0))處的切線與x軸平行.
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)設(shè)g(x)=(ex+2m-2)x-$\frac{1}{2}{x^2}$-n,若?x∈R,不等式f(x)≥g(x)恒成立,求m-$\frac{n}{2}$的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知橢圓C的兩個(gè)焦點(diǎn)坐標(biāo)分別是(-2,0),(2,0),并且經(jīng)過(guò)$P({2,\frac{{\sqrt{6}}}{3}})$.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過(guò)橢圓C的右焦點(diǎn)F作直線l,直線l與橢圓C相交于A、B兩點(diǎn),當(dāng)△OAB的面積最大時(shí),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知某幾何體的三視圖如圖所示,該幾何體的體積為( 。
A.$\frac{2}{3}$B.2C.$\frac{4}{3}$D.$\frac{8}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.若函數(shù)f(x)=x+$\frac{m}{x-1}$(m為大于0的常數(shù))在(1,+∞)上的最小值為3,則實(shí)數(shù)m的值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知向量$\overrightarrow{a}$=(x-z,1),$\overrightarrow$=(2,y+z),且$\overrightarrow{a}$⊥$\overrightarrow$,若實(shí)數(shù)x,y滿足不等式組$\left\{\begin{array}{l}{y-x≥0}\\{x+y-7≤0}\\{x≥0}\end{array}\right.$,則z的最大值為(  )
A.$\frac{21}{2}$B.7C.14D.21

查看答案和解析>>

同步練習(xí)冊(cè)答案