【題目】若二次函數(shù)滿足.且

(1)求的解析式;

(2)若在區(qū)間[-1,1]上不等式恒成立,求實(shí)數(shù)m的取值范圍.

【答案】(1);(2)

【解析】

1)利用待定系數(shù)法求解.由二次函數(shù)可設(shè)fx)=ax2+bx+c,由f0)=1c值,由fx+1)﹣fx)=2x可得a,b的值,從而問題解決;

2)欲使在區(qū)間[1,1]上不等式fx)>2x+m恒成立,只須x23x+1m0,也就是要x23x+1m的最小值大于0即可,最后求出x23x+1m的最小值后大于0解之即得.

(1)設(shè)二次函數(shù),

解得

(2)不等式化為

在區(qū)間[-1,1]上不等式恒成立

在區(qū)間[-1,1]上不等式恒成立

只需在區(qū)間[-1,1]上,函數(shù)是減函數(shù)

所以.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)ξ為隨機(jī)變量,從棱長(zhǎng)為1的正方體的12條棱中任取兩條,當(dāng)兩條棱相交時(shí),ξ=0;當(dāng)兩條棱平行時(shí),ξ的值為兩條棱之間的距離;當(dāng)兩條棱異面時(shí),ξ=1.
(1)求概率P(ξ=0);
(2)求ξ的分布列,并求其數(shù)學(xué)期望E(ξ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是梯形,,,.

1)證明:平面平面

2)若與平面所成的角為,,求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的一個(gè)頂點(diǎn)為,且它的離心率與雙曲線的離心率互為倒數(shù).

(1)求橢圓的方程;

(2)過點(diǎn)A且斜率為k的直線l與橢圓相交于A,B兩點(diǎn),點(diǎn)M在橢圓上,且滿求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是定義在上的奇函數(shù),且,對(duì)任意的 時(shí),有成立.

(1)判斷上的單調(diào)性,并用定義證明;

(2)解不等式;

(3)若對(duì)任意的恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年是中華人民共和國(guó)成立70周年,某校黨支部舉辦了一場(chǎng)“我和我的祖國(guó)”知識(shí)競(jìng)賽,滿分100分,回收40份答卷,成績(jī)均落在區(qū)間內(nèi),將成績(jī)繪制成如下的頻率分布直方圖.

1)估計(jì)知識(shí)競(jìng)賽成績(jī)的中位數(shù)和平均數(shù);

2)從,分?jǐn)?shù)段中,按分層抽樣隨機(jī)抽取5份答卷,再從對(duì)應(yīng)的黨員中選出3位黨員參加縣級(jí)交流會(huì),求選出的3位黨員中有2位成績(jī)來自于分?jǐn)?shù)段的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)F為拋物線C:y2=4x的焦點(diǎn),過點(diǎn)P(﹣1,0)的直線l交拋物線C于兩點(diǎn)A,B,點(diǎn)Q為線段AB的中點(diǎn),若|FQ|=2,則直線l的斜率等于

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】首屆中國(guó)國(guó)際進(jìn)口博覽會(huì)在2018年11月5日—10日在上海國(guó)家會(huì)展中心舉辦。會(huì)議期間,某公司欲采購東南亞某水果種植基地的水果,公司劉總經(jīng)理與該種植基地的負(fù)責(zé)人陳老板商定一次性采購一種水果的采購價(jià)(元/噸)與采購量(噸)之間的函數(shù)關(guān)系的圖象如圖中的折線所示(不包含端點(diǎn),但包含端點(diǎn)).

(Ⅰ)求之間的函數(shù)關(guān)系式;

(Ⅱ)已知該水果種植基地種植該水果的成本是2800元/噸,那么劉總經(jīng)理的采購量為多少時(shí),該水果基地在這次買賣中所獲得利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是等差數(shù)列,滿足, ,數(shù)列滿足, ,且是等比數(shù)列.

1)求數(shù)列的通項(xiàng)公式;

2)求數(shù)列的前項(xiàng)和.

查看答案和解析>>

同步練習(xí)冊(cè)答案