分析 利用函數(shù)的圖象確定周期T的值,利用周期公式確定ω,再根據(jù)圖象過點($\frac{5π}{12}$,2),確定φ的值,即可求函數(shù)f(x)的解析式,由函數(shù)y=Asin(ωx+φ)的圖象變換可得結論.
解答 解:由圖象可得,$\frac{3T}{4}$=$\frac{5π}{12}$-(-$\frac{π}{3}$),解得T=π,
由T=$\frac{2π}{ω}$=π,得ω=2.
因為圖象過點($\frac{5π}{12}$,2),
所以2sin(2×$\frac{5π}{12}$+φ)=2,
則$\frac{5π}{6}$+φ=2kπ+$\frac{π}{2}$,得φ=2kπ-$\frac{π}{3}$,k∈Z,
由-$\frac{π}{2}$<φ<$\frac{π}{2}$,得φ=-$\frac{π}{3}$,
f(x)=2sin(2x-$\frac{π}{3}$),
所以將g(x)=2sin2x的圖象向右平移$\frac{π}{6}$個單位得到函數(shù)f(x)=2sin(2x-$\frac{π}{3}$).
故答案為:$\frac{π}{6}$.
點評 本題考查三角函數(shù)解析式的確定,考查圖象的變換,考查學生分析解決問題的能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {x|x<-1} | B. | {(x,y)|y=x-1} | C. | {y|y=-x2} | D. | {x|x≥-1} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com