已知二次函數(shù)f(x)=ax2+bx+c(a>0).
(Ⅰ)(i)若b=﹣2,且f(x)在(1,+∞)上為單調(diào)遞增函數(shù),求實(shí)數(shù)a的取值范圍;
(ii)若b=﹣1,c=1,當(dāng)x∈[0,1]時(shí),|f(x)|的最大值為1,求實(shí)數(shù)a的取值范圍;
(Ⅱ)若f(0)≥1,f(1)≥1,f(x)=0的有兩個(gè)小于1的不等正根,求a的最小正整數(shù)值.
(Ⅰ)(i)[1,+∞);(ii)(0,1];(Ⅱ)5
解析試題分析:(Ⅰ)(i)若b=﹣2,則f(x)=ax2﹣2x+c(a>0)的圖象是開口朝上且以直線x=為對(duì)稱軸的拋物線.若f(x)在(1,+∞)上為單調(diào)遞增函數(shù),則≤1,解得a≥1,即實(shí)數(shù)a的取值范圍為[1,+∞);(ii)若b=﹣1,c=1,則f(x)=ax2﹣x+1(a>0)的圖象是開口朝上且以直線x=為對(duì)稱軸的拋物線,若當(dāng)x∈[0,1]時(shí),|f(x)|的最大值為1,則或解得0<a<,或≤a≤1,所以實(shí)數(shù)a的取值范圍為(0,1];(Ⅱ)若f(0)≥1,f(1)≥1,f(x)=0的有兩個(gè)小于1的不等正根,則
解得a>4,故a的最小正整數(shù)值為5.
試題解析:(Ⅰ)(i)若b=﹣2,
則f(x)=ax2﹣2x+c(a>0)的圖象是開口朝上且以直線x=為對(duì)稱軸的拋物線.
若f(x)在(1,+∞)上為單調(diào)遞增函數(shù),則≤1,解得a≥1,
即實(shí)數(shù)a的取值范圍為[1,+∞)
(ii)若b=﹣1,c=1,
則f(x)=ax2﹣x+1(a>0)的圖象是開口朝上且以直線x=為對(duì)稱軸的拋物線.
若當(dāng)x∈[0,1]時(shí),|f(x)|的最大值為1,
則或,
解得0<a<,或≤a≤1
綜上所述:0<a≤1
即實(shí)數(shù)a的取值范圍為(0,1]
(Ⅱ)若f(0)≥1,f(1)≥1,f(x)=0的有兩個(gè)小于1的不等正根,
則
由b2>4ac>4a(1﹣a﹣b)得:
b2+4ab+4a2=(b+2a)2>4a,
即b+2a>2,
即b>2﹣2a,…①
由b2>4ac≥4a得:
b<﹣2…②
由①②得:
2﹣2a<﹣2,
解得a>4,
故a的最小正整數(shù)值為5.
考點(diǎn):1.二次函數(shù)的圖象與性質(zhì);2.不等式的性質(zhì)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
某市糧食儲(chǔ)備庫(kù)的設(shè)計(jì)容量為30萬(wàn)噸,年初庫(kù)存糧食10萬(wàn)噸,從1月份起,計(jì)劃每月收購(gòu)糧食M萬(wàn)噸,每月供給市面粉廠糧食1萬(wàn)噸,另外每月還有大量的糧食外調(diào)任務(wù)。已知n個(gè)月內(nèi)外調(diào)糧食的總量為萬(wàn)噸與n的函數(shù)關(guān)系為.要使在16個(gè)月內(nèi)每月糧食收購(gòu)之后能滿足內(nèi)、外調(diào)需要,且每月糧食調(diào)出后糧庫(kù)內(nèi)有不超過(guò)設(shè)計(jì)容量的儲(chǔ)備糧,求M的范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在自然條件下,某草原上野兔第n年年初的數(shù)量記為xn,該年的增長(zhǎng)量yn和 xn與的乘積成正比,比例系數(shù)為,其中m是與n無(wú)關(guān)的常數(shù),且x1<m,
(1)證明:;
(2)用 xn表示xn+1;并證明草原上的野兔總數(shù)量恒小于m.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
記不超過(guò)x的最大整數(shù)為,令,則函數(shù): ①定義域?yàn)镽; ②值域?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/28/6/n2bve.gif" style="vertical-align:middle;" />;③在定義域上是單調(diào)增函數(shù); ④是周期為1的周期函數(shù); ⑤是奇函數(shù)。其中正確判斷的序號(hào)是_________________(把所有正確的序號(hào)都填上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
已知函數(shù)f(x)=loga| x |在(- ∞,0)上單調(diào)遞減,則f(-2) f(a+1).(填寫“<”,“=”,“>”之一)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com