【題目】已知函數(shù)f(x)是定義在R上的偶函數(shù),已知x≥0時(shí),f(x)=x2﹣2x.
(1)畫出偶函數(shù)f(x)的圖像的草圖,并求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)當(dāng)直線y=k(k∈R)與函數(shù)y=f(x)恰有4個(gè)交點(diǎn)時(shí),求k的取值范圍.
【答案】
(1)解:畫出f(x)的圖像如下圖:
由圖像知,函數(shù)f(x)單調(diào)遞增區(qū)間為[﹣1,0],[1,+∞)
(2)解:由圖像可知,當(dāng)﹣1<k<0時(shí),直線與函數(shù)y=f(x)的圖像的交點(diǎn)個(gè)數(shù)為4;
∴k的取值范圍為(﹣1,0)
【解析】(1)根據(jù)已知條件畫出函數(shù)f(x)的圖像,根據(jù)圖像即可得到f(x)的單調(diào)遞增區(qū)間;(2)通過(guò)圖像即可得到k的取值范圍.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解函數(shù)奇偶性的性質(zhì)的相關(guān)知識(shí),掌握在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個(gè)奇函數(shù)的乘除認(rèn)為奇函數(shù);偶數(shù)個(gè)奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復(fù)合函數(shù)的奇偶性:一個(gè)為偶就為偶,兩個(gè)為奇才為奇,以及對(duì)二次函數(shù)的性質(zhì)的理解,了解當(dāng)時(shí),拋物線開口向上,函數(shù)在上遞減,在上遞增;當(dāng)時(shí),拋物線開口向下,函數(shù)在上遞增,在上遞減.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】海島B上有一座高為10米的塔,塔頂?shù)囊粋(gè)觀測(cè)站A,上午11時(shí)測(cè)得一游船位于島北偏東15°方向上,且俯角為30°的C處,一分鐘后測(cè)得該游船位于島北偏西75°方向上,且俯角45°的D處(假設(shè)游船勻速行駛).
(1)求該船行駛的速度(單位:米/分鐘).
(2)又經(jīng)過(guò)一段時(shí)間后,游船到達(dá)海島B的正西方向E處,問(wèn)此時(shí)游船距離海島B多遠(yuǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù) ,區(qū)間M=[a,b](其中a<b)集合N={y|y=f(x),x∈M},則使M=N成立的實(shí)數(shù)對(duì)(a,b)有個(gè).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)y=log2 log4 + (2≤x≤2m , m>1,m∈R)
(1)求x=4 時(shí)對(duì)應(yīng)的y值;
(2)求該函數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司在迎新年晚會(huì)上舉行抽獎(jiǎng)活動(dòng),有甲、乙兩個(gè)抽獎(jiǎng)方案供員工選擇;
方案甲:?jiǎn)T工最多有兩次抽獎(jiǎng)機(jī)會(huì),每次抽獎(jiǎng)的中獎(jiǎng)率為.第一次抽獎(jiǎng),若未中獎(jiǎng),則抽獎(jiǎng)結(jié)束.若中獎(jiǎng),則通過(guò)拋一枚質(zhì)地均勻的硬幣,決定是否繼續(xù)進(jìn)行第二次抽獎(jiǎng),規(guī)定:若拋出硬幣,反面朝上,員工則獲得500元獎(jiǎng)金,不進(jìn)行第二次抽獎(jiǎng);若正面朝上,員工則須進(jìn)行第二次抽獎(jiǎng),且在第二次抽獎(jiǎng)中,若中獎(jiǎng),獲得獎(jiǎng)金1000元;若未中獎(jiǎng),則所獲獎(jiǎng)金為0元.
方案乙:?jiǎn)T工連續(xù)三次抽獎(jiǎng),每次中獎(jiǎng)率均為,每次中獎(jiǎng)均可獲獎(jiǎng)金400元.
(1)求某員工選擇方案甲進(jìn)行抽獎(jiǎng)所獲獎(jiǎng)金(元)的分布列;
(2)某員工選擇方案乙與選擇方案甲進(jìn)行抽獎(jiǎng),試比較哪個(gè)方案更劃算?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)y= 的定義域?yàn)椋?/span> )
A.(﹣∞,1]
B.(﹣∞,2]?
C.(﹣∞,﹣ )∩(﹣ ,1]
D.(﹣∞,﹣ )∪(﹣ ,1]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】集合M={x|﹣2≤x≤2},N={y|0≤y≤2},給出下列四個(gè)圖形,其中能表示以M為定義域,N為值域的函數(shù)關(guān)系的是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)=max{x2﹣ax+a,ax﹣a+1},其中max{x,y}= . (Ⅰ)若對(duì)任意x∈R,恒有f(x)=x2﹣ax+a,求實(shí)數(shù)a的值;
(Ⅱ)若a>1,求f(x)的最小值m(a).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com