如圖,在等腰直角△OPQ中,∠POQ=90°,OP=2,點M在線段PQ上.

(1)若OM=,求PM的長;
(2)若點N在線段MQ上,且∠MON=30°,問:當∠POM取何值時,△OMN的面積最小?并求出面積的最小值.

(1) MP=1或MP=3   (2) ∠POM=30°時,△OMN的面積的最小值為8-4

解析解:(1)在△OMP中,∠OPM=45°,OM=,OP=2,
由余弦定理得,OM2=OP2+MP2-2OP·MP·cos45°,
得MP2-4MP+3=0,
解得MP=1或MP=3.
(2)設∠POM=α,0°≤α≤60°,
在△OMP中,由正弦定理,
=,
所以OM=,
同理ON=.
故S△OMN=OM·ON·sin∠MON
=×
=
=
=
=
=
=.
因為0°≤α≤60°,
30°≤2α+30°≤150°,
所以當α=30°時,sin(2α+30°)的最大值為1,
此時△OMN的面積取到最小值.
即∠POM=30°時,△OMN的面積的最小值為8-4.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

中,角的對邊分別為.
(1)求;
(2)若,求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知△ABC的角A、B、C所對的邊分別是a、b、c,設向量m=(a,b),n=(sinB,sinA),p=(b-2,a-2).
(1)若m∥n,求證:△ABC為等腰三角形;
(2)若m⊥p,邊長c=2,角C=,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在△ABC中,∠A、∠B、∠C所對的邊長分別是a、b、c.
(1)若c=2,C=,且△ABC的面積為,求a、b的值;
(2)若sinC+sin(B-A)=sin2A,試判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某港口O要將一件重要物品用小艇送到一艘正在航行的輪船上,在小艇出發(fā)時,輪船位于港口O北偏西30°且與該港口相距20海里的A處,并正以30海里/時的航行速度沿正東方向勻速行駛.假設該小艇沿直線方向以v海里/時的航行速度勻速行駛,經(jīng)過t小時與輪船相遇.
(1)若希望相遇時小艇的航行距離最小,則小艇航行速度的大小應為多少?
(2)為保證小艇在30分鐘內(含30分鐘)能與輪船相遇,試確定小艇航行速度的最小值;
(3)是否存在v,使得小艇以v海里/時的航行速度行駛,總能有兩種不同的航行方向與輪船相遇?若存在,試確定v的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知向量,,函數(shù)
(1)求函數(shù)的單調遞增區(qū)間;
(2)在中,內角的對邊分別為,已知,,求的面積

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

的內角,,所對的邊長分別為,,,且,
(1)當時,求的值;
(2)當的面積為時,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在銳角△ABC中,內角A,B,C的對邊分別為a,b,c,且2asinB=b.求角A的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在△ABC中,B,BC=2,點D在邊AB上,ADDC,DEAC,E為垂足.

(1)若△BCD的面積為,求CD的長;
(2)若ED,求角A的大。

查看答案和解析>>

同步練習冊答案