設(shè)p:方程x2+y2+kx+ky+k2-2=0表示圓;q:函數(shù)f(x)=(k-1)x+1在R上是增函數(shù).如果p∨q是真命題,p∧q是假命題,求實(shí)數(shù)k的取值范圍.
分析:對(duì)方程配方,可得命題p為真時(shí)的條件;根據(jù)一次函數(shù)為增函數(shù)可得命題q為真時(shí)的條件.根據(jù)復(fù)合命題真值表,可得p與q,一真一假,由此可得k的范圍.
解答:解:方程x2+y2+kx+ky+k2-2=0⇒(x+
k
2
)
2
+(y+
k
2
)
2
=2-
k2
2
,
方程表示圓,則2-
k2
2
>0⇒k2<4⇒-2<k<2,
∴命題p為真時(shí):-2<k<2,
由函數(shù)f(x)=(k-1)x+1在R上是增函數(shù).得:k>1,
∴命題q為真時(shí):k>1,
若p∨q是真命題,p∧q是假命題,由復(fù)合命題真值表得:p與q,一真一假.
若p真q假,則有
-2<k<2
k≤1
⇒-2<k≤1;
若p假q真,則有
k≤-2或k≥2
k>1
⇒k≥2.
綜上所述,實(shí)數(shù)k的取值范圍是-2<k≤1或k≥2.
點(diǎn)評(píng):本題借助考查復(fù)合命題的真假判斷,考查了圓的標(biāo)準(zhǔn)方程與一次函數(shù)的單調(diào)性,要熟練掌握復(fù)合命題真值表.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,設(shè)P是圓x2+y2=25上的動(dòng)點(diǎn),點(diǎn)D是P在x軸上的射影,M為PD上一點(diǎn),且|MD|=
4
5
|PD|
(Ⅰ)當(dāng)P在圓上運(yùn)動(dòng)時(shí),求點(diǎn)M的軌跡C的方程
(Ⅱ)求過(guò)點(diǎn)(3,0)且斜率
4
5
的直線被C所截線段的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,設(shè)P是圓x2+y2=25上的動(dòng)點(diǎn),點(diǎn)D是P在x軸上的射影,M為PD上一點(diǎn),且|MD|=
45
|PD|
(1)求:當(dāng)P在圓上運(yùn)動(dòng)時(shí),求點(diǎn)M的軌跡C的方程.
(2)直線l:kx+y-5=0恒與點(diǎn)M的軌跡C有交點(diǎn),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,設(shè)P是圓x2+y2=2上的動(dòng)點(diǎn),PD⊥x軸,垂足為D,M為線段PD上一點(diǎn),且|PD|=
2
|MD|,點(diǎn)A、F1的坐標(biāo)分別為(0,
2
),(-1,0).
(1)求點(diǎn)M的軌跡方程;
(2)求|MA|+|MF1|的最大值,并求此時(shí)點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•茂名一模)如圖,設(shè)P是圓x2+y2=2上的動(dòng)點(diǎn),點(diǎn)D是P在x軸上的投影.M為線段PD上一點(diǎn),且|MD|=
2
2
|PD|

(1)當(dāng)點(diǎn)P在圓上運(yùn)動(dòng)時(shí),求點(diǎn)M的軌跡C的方程;
(2)已知點(diǎn)F1(-1,0),F(xiàn)2(1,0),設(shè)點(diǎn)A(1,m)(m>0)是軌跡C上的一點(diǎn),求∠F1AF2的平分線l所在直線的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案