定義域為R的函數(shù)y=f(x)的值域為[a,b],則函數(shù)y=f(x+1)的值域為( 。
分析:根據(jù)函數(shù)圖象平移的公式,可得y=f(x+1)的圖象由y=f(x)的圖象向左平移一個單位而得,結(jié)合y=f(x)的值域為[a,b],可得函數(shù)y=f(x+1)的值域.
解答:解:∵函數(shù)y=f(x)的值域為[a,b],
∴函數(shù)y=f(x)的最大值為b,最小值為a.
又∵y=f(x+1)的圖象由y=f(x)的圖象向左平移一個單位而得,
∴函數(shù)y=f(x+1)的最大值與最小值與y=f(x)相同,
即y=f(x+1)的最大值為b,最小值為a.
由此可得函數(shù)y=f(x+1)的值域為[a,b].
故選:B
點評:本題給出函數(shù)y=f(x)的值域,求函數(shù)y=f(x+1)的值域.著重考查了函數(shù)圖象的平移和函數(shù)值域的求法等知識,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知定義域為R的函數(shù)y=f(x)滿足f(x+1)f(x-1)=1,且f(3)=3,則f(2009)=( 。
A、3
B、
1
3
C、2009
D、
1
2009

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

12、已知定義域為R的函數(shù)y=f(x),則下列命題:
①若f(x-1)=f(1-x)恒成立,則函數(shù)y=f(x)的圖象關(guān)于直線x=1的對稱;
②若f(x+1)+f(1-x)=0恒成立,則函數(shù)y=f(x)的圖象關(guān)于(1,0)點對稱;
③函數(shù)y=f(x-1)的圖象與函數(shù)y=f(1-x)的圖象關(guān)于y軸對稱;
④函數(shù)y=-f(x-1)的圖象與函數(shù)y=f(1-x)的圖象關(guān)于原點對稱;
⑤若f(1+x)+f(x-1)=0恒成立,則函數(shù)y=f(x)以4為周期.
其中真命題的有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對定義域是Df.Dg的函數(shù)y=f(x).y=g(x),
規(guī)定:函數(shù)h(x)=
f(x)g(x),當x∈Df且x∈Dg
f(x),當x∈Df且x∉Dg
g(x),當x∉Df且x∈Dg

(1)若函數(shù)f(x)=
1
x-1
,g(x)=x2,寫出函數(shù)h(x)的解析式;
(2)求問題(1)中函數(shù)h(x)的值域;
(3)若g(x)=f(x+α),其中α是常數(shù),且α∈[0,π],請設(shè)計一個定義域為R的函數(shù)y=f(x),及一個α的值,使得h(x)=cos4x,并予以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義域為R的函數(shù)y=f(x)對于任意x都有f(x+2)=
2
f(x),當x∈[0,2]
f(x)=sin(
π
2
x),則方程f(x)-
x
=0,x∈[0,8]
的根的個數(shù)為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義域為R的函數(shù)y=f(x)的值域為[1,2],則函數(shù)y=f(x+2)的值域為
[1,2]
[1,2]

查看答案和解析>>

同步練習(xí)冊答案