分析 (1)利用等差數(shù)列的通項公式和等比中項的定義即可得到首項和公差,即可得到通項公式;
(2)bn=$\frac{1}{({a}_{n}+1)({a}_{n+1}+1)}$=$\frac{1}{4}$($\frac{1}{n}$-$\frac{1}{n+1}$),利用“裂項求和”即可得出數(shù)列{bn}的前n項和為Tn;
(3)先確定$\frac{1}{8}$≤Tn<$\frac{1}{4}$,再根據(jù)使得$\frac{m-2}{4}$<Tn<$\frac{m}{5}$對一切n∈N*恒成立,建立不等式,即可求得m的值.
解答 解:(1)在等差數(shù)列中,設(shè)公差為d≠0,
由題意$\left\{\begin{array}{l}{{a}_{1}{a}_{5}={{a}_{2}}^{2}}\\{{a}_{3}=5}\end{array}\right.$,
∴$\left\{\begin{array}{l}{{a}_{1}({a}_{1}+4d)=({a}_{1}+d)^{2}}\\{{a}_{1}+2d=5}\end{array}\right.$,
解得$\left\{\begin{array}{l}{{a}_{1}=1}\\{d=2}\end{array}\right.$.
∴an=a1+(n-1)d=1+2(n-1)=2n-1.
(2)由(1)知,an=2n-1.
則bn=$\frac{1}{({a}_{n}+1)({a}_{n+1}+1)}$=$\frac{1}{2n•2(n+1)}$=$\frac{1}{4}$($\frac{1}{n}$-$\frac{1}{n+1}$),
所以Tn=$\frac{1}{4}$(1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{4}$+$\frac{1}{n}$-$\frac{1}{n+1}$)=$\frac{1}{4}$(1-$\frac{1}{n+1}$)=$\frac{n}{4(n+1)}$;
(3)Tn+1-Tn=$\frac{n+1}{4(n+2)}$-$\frac{n}{4(n+1)}$=$\frac{1}{4(n+1)(n+2)}$>0,
∴{Tn}單調(diào)遞增,
∴Tn≥T1=$\frac{1}{8}$.
∵Tn=$\frac{n}{4(n+1)}$<$\frac{1}{4}$,
∴$\frac{1}{8}$≤Tn<$\frac{1}{4}$
$\frac{m-2}{4}$<Tn<$\frac{m}{5}$對一切n∈N*恒成立,則$\frac{1}{8}$≤$\frac{m}{5}$-$\frac{m-2}{4}$<$\frac{1}{4}$
∴$\frac{5}{4}$≤m<$\frac{5}{2}$
∵m是自然數(shù),
∴m=2.
點評 本題考查數(shù)列的通項與求和,考查恒成立問題,求得數(shù)列的通項與和是關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 垂直于x軸 | B. | 垂直于y軸 | ||
C. | 既不垂直于x軸也不垂直于y軸 | D. | 方向不能確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ∅ | B. | {(1,1)} | C. | {(x,y)|x+y-2=0} | D. | {(x,y)|3x-2y-1=0} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|-3<x<0} | B. | {x|-1<x<0} | C. | {x|0<x<1} | D. | {x|0<x<3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | $\sqrt{3}$或2$\sqrt{3}$ | C. | 2$\sqrt{3}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com