1.在四棱錐S-ABCD中,已知SC⊥平面ABCD,底面ABCD是邊長(zhǎng)為4$\sqrt{2}$的菱形,∠BCD=60°,SC=2,E為BC的中點(diǎn),若點(diǎn)P在SE上移動(dòng),則△PCA面積的最小值為2$\sqrt{2}$.

分析 求出P到AC的距離最小值,AC,即可求出△PCA面積的最小值.

解答 解:設(shè)P到BC的距離為x,則P到AC的距離為$\sqrt{{x}^{2}+(\sqrt{2}-\frac{\sqrt{2}}{2}x)^{2}}$=$\sqrt{\frac{3}{2}(x-\frac{2}{3})^{2}+\frac{1}{3}}$,
∴x=$\frac{2}{3}$時(shí),P到AC的距離最小值為$\frac{\sqrt{3}}{3}$,
∵底面ABCD是邊長(zhǎng)為4$\sqrt{2}$的菱形,∠BCD=60°,
∴AC=$\sqrt{32+32-2×4\sqrt{2}×4\sqrt{2}×(-\frac{1}{2})}$=4$\sqrt{6}$,
∴△PCA面積的最小值為$\frac{1}{2}×4\sqrt{6}×\frac{\sqrt{3}}{3}$=2$\sqrt{2}$.
故答案為2$\sqrt{2}$.

點(diǎn)評(píng) 本題考查三角形面積的計(jì)算,考查余弦定理,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.雙曲線$\frac{x^2}{{{m^2}+12}}-\frac{y^2}{{4-{m^2}}}=1$的焦距是( 。
A.8B.4C.$2\sqrt{2}$D.與m有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.若f(x)是定義在R上的奇函數(shù),滿足f(x+1)=f(x-1),當(dāng)x∈(0,1)時(shí),f(x)=2x-2,則f(log${\;}_{\frac{1}{2}}$24)的值等于( 。
A.-$\frac{4}{3}$B.-$\frac{7}{2}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.如圖,在四棱錐C-ABDE中,F(xiàn)為CD的中點(diǎn),BD⊥平面ABC,BD∥AE且BD=2AE.
(1)求證:EF∥平面ABC;
(2)已知AB=BC=CA=BD=2,求平面ECD與平面ABC所成的角(銳角)的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知橢圓C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)與雙曲線C2:$\frac{{x}^{2}}{{m}^{2}}$-$\frac{{y}^{2}}{{n}^{2}}$=1(m>0,n>0)有相同的焦點(diǎn)F1,F(xiàn)2,點(diǎn)P是兩曲線的一個(gè)公共點(diǎn),且PF1⊥PF2,e1,e2分別是兩曲線C1,C2的離心率,則2e12+$\frac{{e}_{2}^{2}}{2}$的最小值為( 。
A.1B.$\frac{9}{4}$C.4D.$\frac{9}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.在圓x2+y2=4上任取一點(diǎn)P,過(guò)P作x軸的垂線段,D為垂足,當(dāng)點(diǎn)P在圓上運(yùn)動(dòng)時(shí),記線段PD中點(diǎn)M的軌跡為C.
(Ⅰ)求軌跡C的方程;
(Ⅱ)設(shè)$A({-\sqrt{3},0}),B({\sqrt{3},0})$,試判斷(并說(shuō)明理由)軌跡C上是否存在點(diǎn)Q,使得$\overrightarrow{AQ}•\overrightarrow{BQ}=0$成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.在平面直角坐標(biāo)系xOy中,已知點(diǎn)Q(1,2),P是動(dòng)點(diǎn),且△POQ的三邊所在直線的斜率滿足$\frac{1}{{k}_{op}}$+$\frac{1}{{k}_{OQ}}$=$\frac{1}{{k}_{PQ}}$.
(1)求點(diǎn)P的軌跡C的方程;
(2)過(guò)點(diǎn)F(1,0)作傾斜角為60°的直線L,交曲線C于A,B兩點(diǎn),求△AOB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖,BC為圓O的直徑,D為圓周上異于B、C的一點(diǎn),AB垂直于圓O所在的平面,BE⊥AC于點(diǎn)E,BF⊥AD于點(diǎn)F.
(Ⅰ)求證:BF⊥平面ACD;
(Ⅱ)若AB=BC=2,∠CBD=45°,
①求直線BC與平面BEF所成的角
②求四面體BDEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.若正整數(shù)N除以正整數(shù)m后的余數(shù)為n,則記為N≡n(bmodm),例如10≡2(bmod4).下面程序框圖的算法源于我國(guó)古代聞名中外的《中國(guó)剩余定理》.執(zhí)行該程序框圖,則輸出的i等于(  )
A.4B.8C.16D.32

查看答案和解析>>

同步練習(xí)冊(cè)答案