點P在雙曲線C:
x2
4
-y2=1
上,F(xiàn)1、F2是雙曲線的焦點,∠F1PF2=60°,則P到x軸的距離為( 。
A、
5
5
B、
15
5
C、
2
15
5
D、
15
20
考點:雙曲線的簡單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:出點的坐標(biāo)和|PF1|=m,|PF2|=n,列出關(guān)于m,n的方程,求出n,再根據(jù)雙曲線的第二定義,問題得以解決.
解答: 解:不妨設(shè)點P(x0,y0)在雙曲線的右支上,且|PF1|=m,|PF2|=n,則
m-n=4
20=m2+n2-mn
,
即n2+4n-4=0,n=2
2
-2
,
由雙曲線的第二定義可得
n
x0-
4
5
=
5
2
,∴n=
5
2
x0-2,
5
2
x0-2=2
2
-2,
x0=
4
2
5

y0=
15
5

故選:B
點評:本題主要考查雙曲線的幾何性質(zhì)、第二定義、考查轉(zhuǎn)化的數(shù)學(xué)思想,通過本題可以有效地考查考生的綜合運(yùn)用能力及運(yùn)算能力
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

點P是函數(shù)y=x+
4
x
圖象上任意一點,過點P分別向直線y=x和y軸作垂線,垂足分別為A,B,則
PA
PB
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義域[-2,2]上的奇函數(shù),且在(0,2]內(nèi)有3個零點,則函數(shù)f(x)的零點個數(shù)
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

由下面四個圖形中的點數(shù)分別給出了四個數(shù)列的前四項,將每個圖形的層數(shù)增加可得到這四個數(shù)列的后繼項.按圖中多邊形的邊數(shù)依次稱這些數(shù)列為“三角形數(shù)列”、“四邊形數(shù)列”…,將構(gòu)圖邊數(shù)增加到n可得到“n邊形數(shù)列”,記它的第r項為P(n,r).

(1)求使得P(3,r)>36的最小r的取值;
(2)試推導(dǎo)P(n,r)關(guān)于n、r的解析式;
(3)是否存在這樣的“n邊形數(shù)列”,它的任意連續(xù)兩項的和均為完全平方數(shù).若存在,指出所有滿足條件的數(shù)列,并證明你的結(jié)論;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩條不同的直線m,n,兩個不同的平面α,β,在下列條件中可以得出α⊥β的是( 。
A、m⊥n,n∥α,n∥β
B、m⊥n,α∩β=n,m?α
C、m∥n,n⊥β,m?α
D、m∥n,m⊥α,n⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓O1的方程為x2+(y+1)2=4,圓O2的圓心O2(2,1).
(1)若圓O2與圓O1外切,求圓O2的方程;
(2)若圓O2與圓O1交于A、B兩點,且|AB|=2
2
.求圓O2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點A(sin215°,cos215°)在直角坐標(biāo)平面上位于第
 
象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知cosα=-
3
5
,且α∈(π,
2
),則cos
α
2
的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x2-alnx-x,g(x)=2x-2x
x
+kex
,(e=2.71828…是自然對數(shù)的底數(shù)).
(1)討論f(x)在其定義域上的單調(diào)性;
(2)若a=2,且不等式xf(x)≥g(x)對于?x∈(0,+∞)恒成立,求k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案