【題目】已知函數(shù)(其中為自然對數(shù)的底數(shù)).

1)證明:當時,;

2)當時,恒成立,求實數(shù)的取值范圍.

【答案】1)證明見解析;(2.

【解析】

1)構造函數(shù),對其進行求導,再對導函數(shù)進行求導,進而判斷出函數(shù)上單調遞增,結合,從而證得,即原不等式成立;

2)先由特殊值求得,再用反證法證明該范圍能使時不等式恒成立.由(1)的結論,當時將恒成立的不等式轉化為.,則可構造函數(shù),證明.利用導函數(shù),以及重要不等關系分別證明時和時,,則不等式得證,從而求得.

解:(1)令

所以,

,

,

成立,單調遞增,

,即成立,

所以單調遞增,得,

即當時,,得證;

2)因為當時,恒成立,

,所以,

下證當時原不等式成立

由(1)知當時,

只需證明

因為當時,,

故只需證明

,

所以,

①當時,

成立,單調遞增,

成立,

②當時,

由不等式,

所以成立,

綜上原不等式得證,故實數(shù)的取值范圍為:.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】新型冠狀病毒肺炎正在全球蔓延,對世界經濟影響嚴重,中國疫情防控,復工復學恢復經濟成為各國的榜樣,綿陽某商場在五一勞動節(jié)期間舉行促銷活動,根據(jù)市場調查,該商場決定從3種服裝商品、2種家電、4種日用商品中,選出3種商品進行促銷活動.

1)試求選出的3種商品至少有2種服裝商品的概率;

2)商場對選的A商品采用的促銷方案是有獎銷售,即在該商品現(xiàn)價的基礎上將價格提高300元,同時允許顧客有3次抽獎的機會,若中獎,則每次中獎都可獲得一定數(shù)額的獎金,假設顧客每次抽獎時獲獎與否是等概率的,請問:商場應將中獎獎金數(shù)額最高定為多少元,才能使促銷方案對自己有利?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,以為極點,軸正半軸為極軸建立極坐標系.已知曲線的參數(shù)方程為為參數(shù),),曲線的極坐標方程為,點的一個交點,其極坐標為.設射線與曲線相交于兩點,與曲線相交于兩點.

1)求,的值;

2)求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某省年開始將全面實施新高考方案.在門選擇性考試科目中,物理、歷史這兩門科目采用原始分計分;思想政治、地理、化學、生物這4門科目采用等級轉換賦分,將每科考生的原始分從高到低劃分為,,,,個等級,各等級人數(shù)所占比例分別為、,并按給定的公式進行轉換賦分.該省組織了一次高一年級統(tǒng)一考試,并對思想政治、地理、化學、生物這4門科目的原始分進行了等級轉換賦分.

1)某校生物學科獲得等級的共有10名學生,其原始分及轉換分如下表:

原始分

91

90

89

88

87

85

83

82

轉換分

100

99

97

95

94

91

88

86

人數(shù)

1

1

2

1

2

1

1

1

現(xiàn)從這10名學生中隨機抽取3人,設這3人中生物轉換分不低于分的人數(shù)為,求的分布列和數(shù)學期望;

2)假設該省此次高一學生生物學科原始分服從正態(tài)分布.若,令,則,請解決下列問題:

①若以此次高一學生生物學科原始分等級的最低分為實施分層教學的劃線分,試估計該劃線分大約為多少分?(結果保留為整數(shù))

②現(xiàn)隨機抽取了該省名高一學生的此次生物學科的原始分,若這些學生的原始分相互獨立,記為被抽到的原始分不低于分的學生人數(shù),求取得最大值時的值.

附:若,則

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),且.

(Ⅰ)求的值;

(Ⅱ)在函數(shù)的圖象上任意取定兩點,,記直線的斜率為,求證:存在唯一,使得成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知真命題:“函數(shù)的圖象關于點成中心對稱圖形的充要條件為函數(shù)是奇函數(shù)

)將函數(shù)的圖象向左平移1個單位,再向上平移2個單位,求此時圖象對應的函數(shù)解析式,并利用題設中的真命題求函數(shù)圖象對稱中心的坐標;

)求函數(shù)圖象對稱中心的坐標;

)已知命題:“函數(shù)的圖象關于某直線成軸對稱圖象的充要條件為存在實數(shù),使得函數(shù)是偶函數(shù).判斷該命題的真假.如果是真命題,請給予證明;如果是假命題,請說明理由,并類比題設的真命題對它進行修改,使之成為真命題(不必證明).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠生產某種電子產品,每件產品合格的概率均為,現(xiàn)工廠為提高產品聲譽,要求在交付用戶前每件產品都通過合格檢驗,已知該工廠的檢驗儀器一次最多可檢驗件該產品,且每件產品檢驗合格與否相互獨立.若每件產品均檢驗一次,所需檢驗費用較多,該工廠提出以下檢驗方案:將產品每個()一組進行分組檢驗,如果某一組產品檢驗合格,則說明該組內產品均合格,若檢驗不合格,則說明該組內有不合格產品,再對該組內每一件產品單獨進行檢驗,如此,每一組產品只需檢驗一次或次.設該工廠生產件該產品,記每件產品的平均檢驗次數(shù)為

1的分布列及其期望;

2)(i)試說明,當越大時,該方案越合理,即所需平均檢驗次數(shù)越少;

ii)當時,求使該方案最合理時的值及件該產品的平均檢驗次數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2019年泉州市農村電商發(fā)展迅猛,成為創(chuàng)新農產品交易方式、增加農民收入、引導農業(yè)供給側結構性改革、促進鄉(xiāng)村振興的重要力量,成為鄉(xiāng)村振興的新引擎.2019年大學畢業(yè)的李想,選擇回到家鄉(xiāng)泉州自主創(chuàng)業(yè),他在網(wǎng)上開了一家水果網(wǎng)店.2019年雙十一期間,為了增加水果銷量,李想設計了下面兩種促銷方案:方案一:購買金額每滿120元,即可抽獎一次,中獎可獲得20元,每次中獎的概率為),假設每次抽獎相互獨立.方案二:購買金額不低于180元時,即可優(yōu)惠元,并在優(yōu)惠后的基礎上打九折.

1)在促銷方案一中,設每10個抽獎人次中恰有6人次中獎的概率為,求的最大值點;

2)若促銷方案二中,李想每筆訂單得到的金額均不低于促銷前總價的八折,求的最大值;

3)以(1)中確定的作為的值,且當取最大值時,若某位顧客一次性購買了360元,則該顧客應選擇哪種促銷方案?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設點為平面直角坐標系中的一個動點(其中為坐標系原點),點到定點的距離比到直線的距離大1,動點的軌跡方程為.

1)求曲線的方程;

2)若過點的直線與曲線相交于、兩點.

①若,求直線的直線方程;

②分別過點,作曲線的切線且交于點,是否存在以為圓心,以為半徑的圓與經過點且垂直于直線的直線相交于兩點,求的取值范圍.

查看答案和解析>>

同步練習冊答案