分析 由題意可得:a3n-1=a3n-2+3,a3n=a3n-1+3,可得a3n-2+a3n-1+a3n=3a3n-2+9.a(chǎn)3n+1=a3n=a3n-1+3=a3n-2+6,又a1=1,可得:a3n-2=1+6(n-1)=6n-5.分組求和即可得出.
解答 解:由題意可得:a3n-1=a3n-2+3,a3n=a3n-1+3,可得a3n-2+a3n-1+a3n=3a3n-2+9.
a3n+1=a3n=a3n-1+3=a3n-2+6,又a1=1,
∴a3n-2=1+6(n-1)=6n-5.
∴S3n=(a1+a2+a3)+…+(a3n-2+a3n-1+a3n)
=3(a1+a4+…+a3n-2)+9n
=3×$\frac{n(1+6n-5)}{2}$+9n
=9n2+3n.
故答案為:9n2+3n.
點評 本題考查了數(shù)列遞推關(guān)系、分組求和、等差數(shù)列的通項公式與求和公式,考查了推理能力與計算能力,屬于難題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$+$\frac{1}{2}$i | B. | $\frac{1}{2}$-$\frac{1}{2}$i | C. | $\frac{1}{2}$i | D. | -$\frac{1}{2}$i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 必要而不充分條件 | B. | 充分而不必要條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{1}{3}$,1) | B. | (-∞,$\frac{1}{3}$)∪(1,+∞) | C. | ($\frac{1}{3}$,+∞) | D. | (-∞,$\frac{1}{3}$) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com