如圖,圓內(nèi)接四邊形ABCD的對(duì)角線BD上有一點(diǎn)E,滿足∠BAE=∠CAD.
(Ⅰ)求證:△AEB∽△ACD,△AED∽△ABC;
(Ⅱ)若AB=5,BC=5,CD=3,DA=5.5,AC=6.5,求BD的長(zhǎng).
考點(diǎn):與圓有關(guān)的比例線段,相似三角形的判定
專題:選作題,立體幾何
分析:(Ⅰ)利用對(duì)應(yīng)角相等,證明:△AEB∽△ACD,△AED∽△ABC;
(Ⅱ)由△AEB∽△ACD,△AED∽△ABC,可得BE=
AB•CD
AC
,ED=
AD•BC
AC
,兩式相加可得BD.
解答: (Ⅰ)證明:∵∠ABD=∠ACD,∠ADB=∠ACB,∠BAE=∠CAD
∴△AEB∽△ACD;
∵∠BAC=∠BAE+∠EAC=∠DAC+∠EAC=∠EAD,
∴△AED∽△ABC;
(Ⅱ)解:∵△AEB∽△ACD,△AED∽△ABC,
AB
AC
=
BE
CD
,
AD
AC
=
ED
BC

∴BE=
AB•CD
AC
,ED=
AD•BC
AC

兩式相加可得BD=
AB•CD
AC
+
AD•BC
AC
=
8.5
13
=
17
26
點(diǎn)評(píng):本題考查三角形的相似的證明,考查性質(zhì)的運(yùn)用,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=(1-m2)lnx+x2+(3-m)x(x>0)不存在極值點(diǎn),則m的取值范圍是(  )
A、[-1,1]
B、[-1,
1
3
]
C、[
1
3
,1]
D、(-∞,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=loga(ax-1)(a>0且a≠1),當(dāng)a>1時(shí),求使f(x)>0的x的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2|x+1|-x.
(Ⅰ)根據(jù)絕對(duì)值和分段函數(shù)知識(shí),將f(x)寫成分段函數(shù);
(Ⅱ)在如圖的直角坐標(biāo)系中畫出函數(shù)f(x)的圖象:
(Ⅲ)根據(jù)圖象,寫出函數(shù)f(x)的單調(diào)區(qū)間、值域.(不要求證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=alnx-
1
x
(a∈R)
(1)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線與直線y=-
1
2
x垂直,求切線方程;
(2)討論f(x)的單調(diào)性;
(3)當(dāng)a=1,且x≥2時(shí),證明f(x-1)≤2x-5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)離心率為
1
2
,短軸長(zhǎng)為2,直線l:y=x+m,
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)當(dāng)直線l與橢圓有公共點(diǎn)時(shí),求實(shí)數(shù)m的取值范圍;
(3)若直線l過(guò)橢圓右焦點(diǎn),并與橢圓交于A、B兩點(diǎn),求弦AB之長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=lg(|x+1|+|x-a|-2)(a∈R)
(1)當(dāng)a=-2時(shí),求函數(shù)f(x)的定義域;
(2)若函數(shù)f(x)的定義域?yàn)镽,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

2014年巴西世界杯的周邊商品有80%左右為“中國(guó)制造”,所有的廠家都是經(jīng)過(guò)層層篩選才能獲此殊榮.甲、乙兩廠生產(chǎn)同一產(chǎn)品,為了解甲、乙兩廠的產(chǎn)品質(zhì)量,以確定這一產(chǎn)品最終的供貨商,采用分層抽樣的方法從甲、乙兩廠生產(chǎn)的產(chǎn)品中分別抽出取14件和5件,測(cè)量產(chǎn)品中的微量元素x,y的含量(單位:毫克).下表是乙廠的5件產(chǎn)品的測(cè)量數(shù)據(jù):
編號(hào)12345
x169178166175180
y7580777081
(1)已知甲廠生產(chǎn)的產(chǎn)品共有98件,求乙廠生產(chǎn)的產(chǎn)品數(shù)量;
(2)當(dāng)產(chǎn)品中的微量元素x,y滿足x≥175,且y≥75時(shí),該產(chǎn)品為優(yōu)等品.用上述樣本數(shù)據(jù)估計(jì)乙廠生產(chǎn)的優(yōu)等品的數(shù)量;
(3)從乙廠抽出的上述5件產(chǎn)品中,隨機(jī)抽取2件,求抽取的2件產(chǎn)品中優(yōu)等品數(shù)ξ的分布列及其均值(即數(shù)學(xué)期望).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC中,BC=24.AC,AB邊上的中線長(zhǎng)之和等于39.
(Ⅰ)求△ABC重心M的軌跡方程;
(Ⅱ)若M是(Ⅰ)中所求軌跡上的一點(diǎn),且∠BMC=60°,求△BMC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案