7.計算lg5+lg0.2=0.

分析 直接利用對數(shù)運(yùn)算法則化簡求解即可.

解答 解:lg5+lg0.2=lg(5×0.2)=lg1=0.
故答案為:0.

點評 本題考查對數(shù)運(yùn)算法則的應(yīng)用,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.某幾何體的俯視圖是正方形,則該幾何體不可能是( 。
A.三棱柱B.四棱柱C.圓柱D.圓錐

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖AB是⊙O的一條弦,過點A作圓的切線l,過點B作BC⊥l,垂足是C,BC與⊙O交于點D,已知$AC=2\sqrt{3}$,CD=2.
(Ⅰ)求⊙O的面積;
(Ⅱ)連結(jié)OD,交AB于點E,證明:點E為AB中點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.長方體的一個頂點所在三個面的面積分別是2,3,6,則這個長方體的外接球的表面積是( 。
A.56πB.39πC.36πD.14π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知$A(\sqrt{3},\frac{{\sqrt{3}}}{2})$是橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$上一點,橢圓的離心率$e=\frac{1}{2}$.
(Ⅰ) 求橢圓的方程;
(Ⅱ) 過點P(0,3)的直線m與橢圓交于A,B兩點.若A是PB的中點,求直線m的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知傾斜角為α的直線l與直線x-2y+1=0垂直,則tan2α=( 。
A.-$\frac{3}{4}$B.-$\frac{4}{3}$C.$\frac{3}{4}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖所示,正方體A′B′C′D′-ABCD中,棱長為a,求異面直線B′D′與C′A所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知f(x)=loga$\frac{2+mx}{x-2}$是奇函數(shù)(其中a>1)
(1)求m的值;
(2)判斷f(x)在(2,+∞)上的單調(diào)性并證明;
(3)當(dāng)x∈(r,a-2)時,f(x)的取值范圍恰為(1,+∞),求a與r的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.以橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的中心O為圓心,$\sqrt{{a}^{2}+^{2}}$為半徑的圓稱為該橢圓的“準(zhǔn)圓”.設(shè)橢圓C的左頂點為A,左焦點為F,上頂點為B,且滿足|AB|=2,S△OAB=$\frac{\sqrt{6}}{2}$S△OFB
(1)求橢圓C及其“準(zhǔn)圓”的方程;
(2)對于給定的橢圓C,若點P是射線y=$\sqrt{3}$x(x≥0)與橢圓C的“準(zhǔn)圓”的交點,是否存在以P為一個頂點的“準(zhǔn)圓”的內(nèi)接矩形,使橢圓C完全落在該矩形所圍成的區(qū)域內(nèi)(包括邊界)?若存在,請寫出作圖方法,并予以證明;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案