分析 (1)由橢圓的離心率公式e=$\frac{c}{a}=\frac{{\sqrt{3}}}{2},即\frac{{{a^2}-{b^2}}}{a^2}=\frac{3}{4}$,由圓C:(x-2a)2+(y-b)2=4恰好與直線PF1相切.根據(jù)點到直線的位置關(guān)系,即可求得a和b的值,求得橢圓方程;
(2)當直線l的斜率不存在時,其方程為x=0,與圓C相離,不符合條件,當直線l的斜率存在時,設(shè)其方程為y=kx+1,代入橢圓方程,由△>0,求得${k^2}<\frac{1}{3}$.根據(jù)韋達定理及向量數(shù)量積的坐標運算,即可求得k的值,與k的取值范圍比較,即可求得這樣的直線不存在.
解答 解:(1)設(shè)點F1(-c,0),由橢圓的離心率可得:$\frac{c}{a}=\frac{{\sqrt{3}}}{2},即\frac{{{a^2}-{b^2}}}{a^2}=\frac{3}{4}$
所以:a=2b,則$c=\sqrt{3}b$(2分)
則PF1的方程為$x-\sqrt{3}y+\sqrt{3}b=0$,
由圓C與直線PF1相切可得$\frac{{|{2a-\sqrt{3}b+\sqrt{3}b}|}}{2}=2,即a=2$,則b=1
所以,圓C的方程為(x-4)2+(y-1)2=4(4分)
(2)不存在,理由如下:
當直線l的斜率不存在時,其方程為x=0,與圓C相離,不符合條件;
當直線l的斜率存在時,設(shè)其方程為y=kx+1,
由$\left\{{\begin{array}{l}{y=kx+1}\\{{{(x-4)}^2}+{{(y-1)}^2}=4}\end{array}}\right.$可得(k2+1)x2-8x+12=0,
由△=(-8)2-4×12×(k2+1)>0,可得${k^2}<\frac{1}{3}$.
設(shè)$A({x_{^1}},{y_1}),B({x_2},{y_2})$,則${x_1}+{y_1}=\frac{8}{{{k^2}+1}},{x_1}{y_1}=\frac{12}{{{k^2}+1}}$(8分)
$\overrightarrow{CA}=({x_1}-4,{y_1}-1)$,$\overrightarrow{CB}=({x_2}-4,{y_2}-1)$,
$\overrightarrow{CA}•\overrightarrow{CB}={x_1}{x_2}-4({x_1}+{x_2})+16+{k^2}{x_1}{x_2}$=$28-\frac{32}{{{k^2}+1}}$
由$\overrightarrow{CA}•\overrightarrow{CB}=\frac{92}{5}$可得$28-\frac{32}{{{k^2}+1}}$=$\frac{92}{5}$即$\frac{32}{{{k^2}+1}}=\frac{48}{5}$
解得$k=±\frac{{\sqrt{21}}}{3}$,
不符合${k^2}<\frac{1}{3}$,均舍去
所以不存在滿足題意的直線l. (12分)
點評 本題考查橢圓的標準方程,直線與橢圓的位置關(guān)系,一元二次方程根與系數(shù)的關(guān)系及判別式,考查向量數(shù)量積的坐標運算,考查計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1-2i | B. | 1+2i | C. | -1+2i | D. | -1-2i |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com