6.甲、乙兩名射手在同一條件下射擊,所得環(huán)數(shù)X1,X2的分布列分別為
 X1 610 
 P 0.160.14 0.42 0.1 0.18 
 X2 6 710 
 P 0.190.24 0.12 0.28 0.17 
根據環(huán)數(shù)的均值和方差比較這兩名射手的射擊水平.

分析 由離散型隨機變量的分布列的性質,先分別求出E(X1)、E(X2)、D(X1)、D(X2),從而得到甲、乙兩名射手的平均成績相等,但甲選手比乙選手成績更穩(wěn)定.

解答 解:由題意,得:
E(X1)=6×0.16+7×0.14+8×0.42+9×0.1+10×0.18=8,
D(X1)=(6-8)2×0.16+(7-8)2×0.14+(8-8)2×0.42+(9-8)2×0.1+(10-8)2×0.18=1.6.
E(X2)=6×0.19+7×0.24+8×0.12+9×0.28+10×0.17=8,
D(X2)=(6-8)2×0.19+(7-8)2×0.24+(8-8)2×0.12+(9-8)2×0.28+(10-8)2×0.17=1.96.
∵E(X1)=E(X2),D(X1)<D(X2),
∴甲、乙兩名射手的平均成績相等,但甲選手比乙選手成績更穩(wěn)定.

點評 本題考查離散型隨機變量的均值和方差的求法及應用,是基礎題,解題時要認真審題,注意離散型隨機變量的分布列的性質的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

16.如圖,已知ABCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E,F(xiàn)分別AC,AD是上的動點,且$\frac{AE}{AC}$=$\frac{AF}{AD}$=λ(0<λ<1).
(Ⅰ)求證:不論λ為何值,總有EF⊥平面ABC;
(Ⅱ)若三棱錐A-BEF的體積為$\frac{{\sqrt{6}}}{12}$,求此時λ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知函數(shù)f(x)滿足:f(x)≥|x|且f(x)≥2x,x∈R.( 。
A.若f(a)≤|b|,則a≤bB.若f(a)≤2b,則a≤bC.若f(a)≥|b|,則a≥bD.若f(a)≥2b,則a≥b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.如圖所示,在△ABC中,D為邊AC的中點,BC=3BE,其中AE與BD交于O點,延長CO交邊AB于F點,則$\frac{FO}{OC}$=$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知二次函數(shù)y=g(x)的導函數(shù)的圖象與直線y=2x平行,且y=g(x)在x=-1處取得極小值-5.
(1)求二次函數(shù)y=g(x)的解析式;
(2)設f(x)=x•g(x),求函數(shù)y=f(x),x∈[-3,1]的最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.設x,y滿足約束條件$\left\{\begin{array}{l}{3x-y-2≤0}\\{x-y≥0}\\{x≥0,y≥0}\end{array}\right.$,若目標函數(shù)z=x+$\frac{m}{2}$y(m>0)的最大值為2,則m的值為1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.正△ABC的邊長為4,CD是AB邊上的高,E、F分別是AC和BC邊的中點,現(xiàn)將△ABC沿CD翻折成直二面角A-DC-B.
(1)試判斷直線AB與平面DEF的位置關系,并說明理由;
(2)求三棱錐E-AFD的體積;
(3)求四面體ABCD外接球的表面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.如圖,長方體ABCD-A1B1C1D1中,AB=AD=1.
(1)求異面直線A1B1與BD所成角的大;
(2)∠B1AB=60°,求三棱錐B1-ABC的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知a是實數(shù),函數(shù)f(x)=x2(x-a),若f′(1)=3,則曲線y=f(x)在點(1,f(1))處的切線方程為3x-y-2=0.

查看答案和解析>>

同步練習冊答案