經(jīng)過(guò)拋物線y=
1
4
x2的焦點(diǎn)和雙曲線
x2
17
-
y2
8
=1的右焦點(diǎn)的直線方程為(  )
A、x+48y-3=0
B、x+80y-5=0
C、x+3y-3=0
D、x+5y-5=0
考點(diǎn):拋物線的簡(jiǎn)單性質(zhì),雙曲線的簡(jiǎn)單性質(zhì)
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:求出拋物線y=
1
4
x2的焦點(diǎn)坐標(biāo)、雙曲線
x2
17
-
y2
8
=1的右焦點(diǎn),即可求出直線方程.
解答: 解:拋物線y=
1
4
x2的焦點(diǎn)坐標(biāo)為(0,1),
雙曲線
x2
17
-
y2
8
=1的右焦點(diǎn)的坐標(biāo)為(5,0),
∴所求直線方程為
x
5
+y=1
即x+5y-5=0.
故選:D.
點(diǎn)評(píng):本題考查拋物線、雙曲線的性質(zhì),考查學(xué)生的計(jì)算能力,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線l過(guò)定點(diǎn)(2,2)且與圓x2+y2=9交于點(diǎn)A,B,當(dāng)|AB|最小時(shí),直線l恰好和拋物線x2=ay-9(a<0)相切,則a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列函數(shù)是偶函數(shù)的是( 。
A、y=lgx2
B、y=(
1
2
x
C、y=1-x2,x∈(-1,1]
D、y=x-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè){an}是等比數(shù)列,若a2=3,a7=1,則數(shù)列{an}前8項(xiàng)的積為(  )
A、56B、80C、81D、128

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列函數(shù)是偶函數(shù),且在(0,+∞)上單調(diào)遞增的是( 。
A、y=x3
B、y=lgx
C、y=|x|
D、y=1-x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在R上的函數(shù)f(x)在(-∞,-2)上是減函數(shù),且f(x-2)的圖象關(guān)于y軸對(duì)稱,則(  )
A、f(-3)<f(1)
B、f(-3)=f(0)
C、f(-3)=f(1)
D、f(-3)>f(0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若k>1,a>0,則k2a2+
16
(k-1)a2
取得最小值時(shí),a的值為( 。
A、1
B、
2
C、2
D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

經(jīng)過(guò)點(diǎn)(-1,0),且與直線x+2y-3=0垂直的直線方程是( 。
A、2x-y+2=0
B、2x+y+2=0
C、2x-y-2=0
D、x-2y+1=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖1,直角梯形FBCE中,四邊形ADEF是正方形,AB=AD=2,CD=4.將正方形沿AD折起,得到如圖2所示的多面體,其中面ADE1F1⊥面ABCD,M是E1C中點(diǎn).
(1)證明:BM∥平面ADE1F1
(2)求三棱錐D-BME1的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案