20.寫(xiě)出命題“若a2>b2,則|a|>|b|”的逆命題若|a|>|b|,則a2>b2

分析 根據(jù)逆命題的定義進(jìn)行求解即可.

解答 解:根據(jù)逆命題的定義得命題的逆命題為:若|a|>|b|,則a2>b2;
故答案為:若|a|>|b|,則a2>b2

點(diǎn)評(píng) 本題主要考查四種命題的關(guān)系,根據(jù)逆命題的定義是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.某公園內(nèi)直線道路旁有一半徑為10米的半圓形荒地(圓心O在道路上,AB為直徑),現(xiàn)要在荒地的基礎(chǔ)上改造出一處景觀.在半圓上取一點(diǎn)C,道路上B點(diǎn)的右邊取一點(diǎn)D,使OC垂直于CD,且OD的長(zhǎng)不超過(guò)20米.在扇形區(qū)域AOC內(nèi)種植花卉,三角形區(qū)域OCD內(nèi)鋪設(shè)草皮.已知種植花卉的費(fèi)用每平方米為200元,鋪設(shè)草皮的費(fèi)用每平方米為100元.
(1)設(shè)∠COD=x(單位:弧度),將總費(fèi)用y表示為x的函數(shù)式,并指出x的取值范圍;
(2)當(dāng)x為何值時(shí),總費(fèi)用最低?并求出最低費(fèi)用.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知函數(shù)f(x)=ax-1(a>0且a≠1)的圖象過(guò)定點(diǎn)A,則點(diǎn)A為(  )
A.(0,-1)B.(0,1)C.(-1,1)D.(1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.如圖正方體ABCD-A1B1C1D1,M,N分別為A1D1和AA1的中點(diǎn),則下列說(shuō)法中正確的個(gè)數(shù)為(  )
①C1M∥AC;
②BD1⊥AC;
③BC1與AC的所成角為60°;
④B1A1、C1M、BN三條直線交于一點(diǎn).
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知正三棱柱ABC-A1B1C1的底面邊長(zhǎng)為2cm,高為4cm,則一質(zhì)點(diǎn)自點(diǎn)A出發(fā),沿著三棱柱的側(cè)面,繞行兩周到達(dá)點(diǎn)A1的最短路線的長(zhǎng)為( 。
A.4$\sqrt{10}$cmB.12$\sqrt{3}$cmC.2$\sqrt{13}$cmD.13cm

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.若函數(shù)$f(x)=\frac{1}{3}{x^3}-{x^2}-3x-a$有三個(gè)不同的零點(diǎn),則實(shí)數(shù)a的取值范圍是$(-9,\frac{5}{3})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=ex,g(x)=-x2+2x-af(x)(a∈R),x1,x2是兩個(gè)任意實(shí)數(shù)且x1≠x2
(1)求函數(shù)f(x)的圖象在x=0處的切線方程;
(2)若函數(shù)g(x)在R上是增函數(shù),求a的取值范圍;
(3)求證:$f(\frac{{{x_1}+{x_2}}}{2})<\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知函數(shù)f(x)=sin2xcos2φ+cos2xsin2φ(φ>0)的圖象關(guān)于直線x=$\frac{π}{3}$對(duì)稱,則φ 的最小值為$\frac{5π}{12}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.不使用計(jì)算器,計(jì)算下列各題:
(1)${({5\frac{1}{16}})^{0.5}}+{({-1})^{-1}}÷{0.75^{-2}}+{({2\frac{10}{27}})^{-\frac{2}{3}}}$;
(2)${log_3}\sqrt{27}+lg25+lg4+{7^{{{log}_7}2}}+{({-9.8})^0}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案