分析 根據(jù)題意求出函數(shù)的導數(shù)并且通過導數(shù)求出出原函數(shù)的單調(diào)區(qū)間,進而得到原函數(shù)的極值,因為函數(shù)存在三個不同的零點,所以結(jié)合函數(shù)的性質(zhì)可得函數(shù)的極大值大于0,極小值小于0,即可單調(diào)答案.
解答 解:由題意可得:f′(x)=x2-2x-3.
令f′(x)>0,則x>3或x<-1,令f′(x)<0,則-1<x<3,
所以函數(shù)f(x)的單調(diào)增區(qū)間為(-∞,-1)和(3,+∞),減區(qū)間為(-1,3),
所以當x=-1時函數(shù)有極大值f(-1)=$\frac{5}{3}$-a,當x=3時函數(shù)有極小值f(3)=-9-a,
因為函數(shù)f(x)存在三個不同的零點,
所以f(-1)>0并且f(3)<0,
解得:-9<c<$\frac{5}{3}$.
所以實數(shù)a的取值范圍是 (-9,$\frac{5}{3}$).
故答案為:$(-9,\frac{5}{3})$.
點評 解決此類問題的關鍵是熟練掌握利用導數(shù)球函數(shù)的單調(diào)區(qū)間與函數(shù)的極值,并且掌握通過函數(shù)零點個數(shù)進而判斷極值點與0的大小關系.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{5}{2}$ | B. | $-\frac{5}{2}$ | C. | 5 | D. | -5 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -$\frac{3}{5}$ | B. | -$\frac{4}{5}$ | C. | -$\frac{3}{5}$i | D. | -$\frac{4}{5}$i |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{π}{4}$ | B. | $\frac{3π}{4}$ | C. | $\frac{5π}{4}$ | D. | $\frac{7π}{4}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com