5.若函數(shù)$f(x)=\frac{1}{3}{x^3}-{x^2}-3x-a$有三個不同的零點,則實數(shù)a的取值范圍是$(-9,\frac{5}{3})$.

分析 根據(jù)題意求出函數(shù)的導數(shù)并且通過導數(shù)求出出原函數(shù)的單調(diào)區(qū)間,進而得到原函數(shù)的極值,因為函數(shù)存在三個不同的零點,所以結(jié)合函數(shù)的性質(zhì)可得函數(shù)的極大值大于0,極小值小于0,即可單調(diào)答案.

解答 解:由題意可得:f′(x)=x2-2x-3.
令f′(x)>0,則x>3或x<-1,令f′(x)<0,則-1<x<3,
所以函數(shù)f(x)的單調(diào)增區(qū)間為(-∞,-1)和(3,+∞),減區(qū)間為(-1,3),
所以當x=-1時函數(shù)有極大值f(-1)=$\frac{5}{3}$-a,當x=3時函數(shù)有極小值f(3)=-9-a,
因為函數(shù)f(x)存在三個不同的零點,
所以f(-1)>0并且f(3)<0,
解得:-9<c<$\frac{5}{3}$.
所以實數(shù)a的取值范圍是 (-9,$\frac{5}{3}$).
故答案為:$(-9,\frac{5}{3})$.

點評 解決此類問題的關鍵是熟練掌握利用導數(shù)球函數(shù)的單調(diào)區(qū)間與函數(shù)的極值,并且掌握通過函數(shù)零點個數(shù)進而判斷極值點與0的大小關系.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

15.若a+b=3,則代數(shù)式a3+b3+9ab的值為27.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.等邊△ABC的邊長為$\sqrt{5}$,則$\overrightarrow{AB}•\overrightarrow{BC}$=( 。
A.$\frac{5}{2}$B.$-\frac{5}{2}$C.5D.-5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.若復數(shù)z滿足,(4+3i)z=|3-4i|,則z的虛部為( 。
A.-$\frac{3}{5}$B.-$\frac{4}{5}$C.-$\frac{3}{5}$iD.-$\frac{4}{5}$i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.寫出命題“若a2>b2,則|a|>|b|”的逆命題若|a|>|b|,則a2>b2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.某工廠打算建造如圖所示的圓柱形容器(不計厚度,長度單位:米),按照設計要求,該容器的底面半徑為r,高為h,體積為16π立方米,且h≥2r.已知圓柱的側(cè)面部分每平方米建造費用為3千元,圓柱的上、下底面部分每平方米建造費用為a千元,假設該容器的建造費用僅與其表面積有關,該容器的建造總費用為y千元.
(1)求y關于r的函數(shù)表達式,并求出函數(shù)的定義域;
(2)問r為多少時,該容器建造總費用最?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.在△ABC中,角A,B,C的對邊分別為a,b,c,已知tanB+tanC+$\sqrt{3}$tanBtanC=$\sqrt{3}$.
(1)求角A的大。
(2)若a=$\sqrt{3}$,b=$\sqrt{2}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.如圖,AB、CD是⊙O的兩條直徑,P是圓周上任一點,作PM⊥AB,PN⊥CD,AH⊥CD,求證:MN=AH.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.若α,β∈(0,π)且 $tanα=\frac{1}{2},tanβ=\frac{1}{3}$,則α+β=(  )
A.$\frac{π}{4}$B.$\frac{3π}{4}$C.$\frac{5π}{4}$D.$\frac{7π}{4}$

查看答案和解析>>

同步練習冊答案