【題目】在四棱錐P﹣ABCD中,PA⊥面ABCD,∠DAB=90°,AB平行于CD,AD=CD=2AB=2,E,F(xiàn)分別為PC,CD的中點(diǎn)
(1)求證:AB⊥面BEF;
(2)設(shè)PA=h,若二面角E﹣BD﹣C大于45°,求h的取值范圍.

【答案】
(1)證明:以AB所在直線為x軸,以AD所在直線為y軸,

以AP所在直線為z軸建立空間直角坐標(biāo)系,

則A(0,0,0),P(0,0,h),B(1,0,0),D(0,2,0),C(2,2,0),

E(1,1, ),F(xiàn)(1,2,0),

=(0,1, ), =(0,2,0), =(﹣2,0,0),

=0, =0,

∴CD⊥BE,CD⊥BF,∴CD⊥面BEF.

∵AB平行于CD,∴AB⊥面BEF


(2)解:設(shè)面BCD的法向量為 ,則 (0,0,1),

設(shè)面BDE的法向量為 (x,y,z),

=(﹣1,2,0), =(0,1, ),

,取x=2,得 =(2,1,﹣ ),

∵二面角E﹣BD﹣C大于45°,

∴cos< >= <cos45°= ,

由h>0,解得h> ,

∴h的取值范圍是( ,+∞).


【解析】(1)以AB所在直線為x軸,以AD所在直線為y軸,以AP所在直線為z軸建立空間直角坐標(biāo)系,利用向量法能證明AB⊥面BEF.(2)求出面BCD的法向量和面DE的法向量,利用向量法能求出h的取值范圍.
【考點(diǎn)精析】本題主要考查了直線與平面垂直的判定的相關(guān)知識(shí)點(diǎn),需要掌握一條直線與一個(gè)平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直;注意點(diǎn):a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學(xué)思想才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐中,平面平面 ,點(diǎn)在線段上,且, ,點(diǎn)在線段上,且.

(1)證明: 平面;

(2)若四棱錐的體積為7,求線段的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,曲線的方程為.以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)寫(xiě)出曲線的參數(shù)方程和曲線的直角坐標(biāo)方程;

(2)設(shè)點(diǎn)在曲線上,點(diǎn)在曲線上,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) .

(1)若函數(shù)的圖象恰好相切與點(diǎn),求實(shí)數(shù) 的值;

(2)當(dāng)時(shí), 恒成立,求實(shí)數(shù)的取值范圍;

(3)求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某高校在2013年的自主招生考試成績(jī)中隨機(jī)抽取100名學(xué)生的筆試成績(jī),按成績(jī)分組:第1組[160,165),第2組[165,170),第3組[170,175),第4組[175,180),第5組[180,85],得到的頻率分布直方圖如圖所示.
(1)求第3,4,5組的頻率;
(2)為了能選拔出最優(yōu)秀的學(xué)生,該校決定在筆試成績(jī)高的第3,4,5組中用分層抽樣的方法抽取6名學(xué)生進(jìn)入第二輪面試,求第3,4,5組每組各抽取多少名學(xué)生進(jìn)入第二輪面試?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法中正確的有
①刻畫(huà)一組數(shù)據(jù)集中趨勢(shì)的統(tǒng)計(jì)量有極差、方差、標(biāo)準(zhǔn)差等;刻畫(huà)一組數(shù)據(jù)離散程度統(tǒng)計(jì)量有平均數(shù)、中位數(shù)、眾數(shù)等.
②拋擲兩枚硬幣,出現(xiàn)“兩枚都是正面朝上”、“兩枚都是反面朝上”、“恰好一枚硬幣正面朝上”的概率一樣大.
③有10個(gè)鬮,其中一個(gè)代表獎(jiǎng)品,10個(gè)人按順序依次抓鬮來(lái)決定獎(jiǎng)品的歸屬,則摸獎(jiǎng)的順序?qū)χ歇?jiǎng)率沒(méi)有影響.
④向一個(gè)圓面內(nèi)隨機(jī)地投一個(gè)點(diǎn),如果該點(diǎn)落在圓內(nèi)任意一點(diǎn)都是等可能的,則該隨機(jī)試驗(yàn)的數(shù)學(xué)模型是古典概型.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】北京時(shí)間3月15日下午,谷歌圍棋人工智能與韓國(guó)棋手李世石進(jìn)行最后一輪較量,獲得本場(chǎng)比賽勝利,最終人機(jī)大戰(zhàn)總比分定格在.人機(jī)大戰(zhàn)也引發(fā)全民對(duì)圍棋的關(guān)注,某學(xué)校社團(tuán)為調(diào)查學(xué)生學(xué)習(xí)圍棋的情況,隨機(jī)抽取了100名學(xué)生進(jìn)行調(diào)查.根據(jù)調(diào)查結(jié)果繪制的學(xué)生日均學(xué)習(xí)圍棋時(shí)間的頻率分布直方圖(如圖所示),將日均學(xué)習(xí)圍棋時(shí)間不低于40分鐘的學(xué)生稱為“圍棋迷”.

(1)根據(jù)已知條件完成如圖列聯(lián)表,并據(jù)此資料判斷你是否有的把握認(rèn)為“圍棋迷”與性別有關(guān)?

(2)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該地區(qū)大量學(xué)生中,采用隨機(jī)抽樣方法每次抽取1名學(xué)生,抽取3次,記所抽取的3名學(xué)生中的“圍棋迷”人數(shù)為.若每次抽取的結(jié)果是相互獨(dú)立的,求的分布列,期望和方差

附:,其中

0.05

0.010

3.74

6.63

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)y=sin2x+sin2x+3cos2x,求
(1)函數(shù)的最小值及此時(shí)的x的集合.
(2)函數(shù)的單調(diào)減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=2sin(2x+φ)(0<φ<π),y=f(x)圖象的一個(gè)對(duì)稱中心是

(1)求φ;
(2)在給定的平面直角坐標(biāo)系中作出該函數(shù)在x∈[0,π]的圖象;
(3)求函數(shù)f(x)≥1(x∈R)的解集.

查看答案和解析>>

同步練習(xí)冊(cè)答案