(本小題為選做題,滿分10分)

已知矩陣,其中,若點(diǎn)P(1,1)在矩陣A的變換下得到點(diǎn),

(1)求實(shí)數(shù)a的值;    (2)求矩陣A的特征值及特征向量.

 

【答案】

解:(1)由  =,得 …………4分

(2)由(1)知  ,則矩陣A的特征多項(xiàng)式為

,得矩陣A的特征值為-1或3

當(dāng)時(shí) 二元一次方程

∴矩陣A的屬于特征值-1的一個(gè)特征向量為

    當(dāng)時(shí),二元一次方程

∴矩陣A的屬于特征值3的一個(gè)特征向量為.……………………10分

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(注意:本小題為選做題,A,B兩題選做其中一題,若都做了,則按A題答案給分)
A.當(dāng)x,y滿足條件|x-1|+|y+1|<1時(shí),變量u=
x-1
y-2
的取值范圍是
-
1
3
<u<
1
3
-
1
3
<u<
1
3

B.以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,并在兩種坐標(biāo)系中取相同的長(zhǎng)度單位.已知直線的極坐標(biāo)方程為θ=
π
4
(ρ∈R),它與曲線
x=1+2cosα
y=2+2sinα
(α為參數(shù))相交于A,B兩點(diǎn),則以線段AB為直徑的圓的面積為
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題為選做題,滿分8分)

    試求曲線在矩陣MN變換下的函數(shù)解析式,其中M =,N =

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年北京市高考預(yù)測(cè)試卷理科數(shù)學(xué)試卷(解析版) 題型:解答題

.(本小題滿分12分)在一次數(shù)學(xué)考試中,第21題和第22題為選做題. 規(guī)定每位考生必須且只須在其中選做一題. 設(shè)4名考生選做這兩題的可能性均為

(Ⅰ)求其中甲、乙二名學(xué)生選做同一道題的概率;

(Ⅱ)設(shè)這4名考生中選做第22題的學(xué)生個(gè)數(shù)為,求的概率分布及數(shù)學(xué)期望.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年山東省煙臺(tái)市高三下學(xué)期3月診斷性測(cè)試?yán)砜茢?shù)學(xué) 題型:解答題

(本小題滿分12分)

在一次數(shù)學(xué)考試中,第21題和第22題為選做題. 規(guī)定每位考生必須且只須在其中選做一題. 設(shè)4名考生選做這兩題的可能性均為.

(1)求其中甲、乙二名學(xué)生選做同一道題的概率;

(2)設(shè)這4名考生中選做第22題的學(xué)生個(gè)數(shù)為,求的概率分布及數(shù)學(xué)期望.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:江蘇南通市通州區(qū)2010高三查漏補(bǔ)缺專項(xiàng)練習(xí)數(shù)學(xué)理 題型:解答題

(本小題為選做題,滿分10分)

設(shè)點(diǎn)分別是曲線上的動(dòng)點(diǎn),求動(dòng)點(diǎn)間的最小距離.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案