精英家教網 > 高中數學 > 題目詳情

設n∈N+,求函數f(n)=n2(10-n)的最大值.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知點(n,an)(n∈N*)在函數f(x)=-6x-2的圖象上,數列{an}的前n項和為Sn
(Ⅰ)求Sn;
(Ⅱ)設cn=an+8n+3,數列{dn}滿足d1=c1,dn+1=cdn(n∈N*).求數列{dn}的通項公式;
(Ⅲ)設g(x)是定義在正整數集上的函數,對于任意的正整數x1、x2,恒有g(x1x2)=x1g(x2)+x2g(x1)成立,且g(2)=a(a為常數,且a≠0),記bn=
g(
dn+1
2
)
dn+1
,試判斷數列{bn}是否為等差數列,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列an的前n項和為Sn,點(n,Sn)(n∈N*)在函數f(x)=3x2-2x的圖象上,
(1)求數列an的通項公式;
(2)設bn=
3anan+1
,求數列bn的前n項和Tn

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•黃埔區(qū)一模)對于函數y=f(x)與常數a,b,若f(2x)=af(x)+b恒成立,則稱(a,b)為函數f(x)的一個“P數對”;若f(2x)≥af(x)+b恒成立,則稱(a,b)為函數f(x)的一個“類P數對”.設函數f(x)的定義域為R+,且f(1)=3.
(1)若(1,1)是f(x)的一個“P數對”,求f(2n)(n∈N*);
(2)若(-2,0)是f(x)的一個“P數對”,且當x∈[1,2)時f(x)=k-|2x-3|,求f(x)在區(qū)間[1,2n)(n∈N*)上的最大值與最小值;
(3)若f(x)是增函數,且(2,-2)是f(x)的一個“類P數對”,試比較下列各組中兩個式子的大小,并說明理由.
①f(2-n)與2-n+2(n∈N*);
②f(x)與2x+2(x∈(0,1]).

查看答案和解析>>

科目:高中數學 來源:2012高三數學一輪復習單元練習題 函數與數列(2) 題型:044

已知數列{an},a1=1,點P(an,an+1)(n∈N+)在直線x-y+1=0上.

(1)求數列{an}的通項公式;

(2)函數f(n)=…+(n∈N+),且n≥2),求函數f(n)的最小值.

(3)設bn,Sn表示數列{bn}的前n項和,試問:是否存在關于n的整式g(n),使得S1+S2+S3+……+Sn-1=(Sn-1)g(n)對于一切不小于2的自然數n恒成立?若存在,寫出g(n)的解析式,并加以證明;若不存在,試說明理由.

查看答案和解析>>

同步練習冊答案