……
(1)根據(jù)以上等式,可猜想出的一般結(jié)論是________;
(2)若數(shù)列{an}中,,…,前n項和Sn=,則n=________.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
甲罐中有5個紅球、2個白球和3個黑球,乙罐中有4個紅球、4個白球和2個黑球,先從甲罐中任意取出一球放入乙罐,再從乙罐中取出一球,則從乙罐中取出的球是白球的概率為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
命題“有些有理數(shù)是無限循環(huán)小數(shù),整數(shù)是有理數(shù),所以整數(shù)是無限循環(huán)小數(shù)”是假命題,推理錯誤的原因是( )
A.使用了歸納推理
B.使用了類比推理
C.使用了“三段論”,但大前提錯誤
D.使用了“三段論”,但小前提錯誤
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
甲、乙兩位同學(xué)玩游戲,對于給定的實(shí)數(shù)a1,按下列方法操作一次產(chǎn)生一個新的實(shí)數(shù):由甲、乙同時各擲一枚均勻的硬幣,如果出現(xiàn)兩個正面朝上或兩個反面朝上,則把a1乘以2后再加上12;如果出現(xiàn)一個正面朝上,一個反面朝上,則把a1除以2后再加上12,這樣就可得到一個新的實(shí)數(shù)a2.對實(shí)數(shù)a2仍按上述方法進(jìn)行一次操作,又得到一個新的實(shí)數(shù)a3.當(dāng)a3>a1時,甲獲勝,否則乙獲勝.若甲獲勝的概率為,則a1的取值范圍是( )
A.[-12,24]
B.(-12,24)
C.(-∞,-12)∪(24,+∞)
D.(-∞,-12]∪[24,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
經(jīng)過圓x2+y2=r2上一點(diǎn)M(x0,y0)的切線方程為x0x+y0y=r2.類比上述性質(zhì),可以得到橢圓+=1類似的性質(zhì)為:經(jīng)過橢圓+=1上一點(diǎn)P(x0,y0)的切線方程為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知n為正偶數(shù),用數(shù)學(xué)歸納法證明1-+-+…+時,若已假設(shè)n=k(k≥2為偶數(shù))時命題為真,則還需要用歸納假設(shè)再證n=( )時等式成立.( )
A.k+1 B.k+2
C.2k+2 D.2(k+2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知點(diǎn)Pn(an,bn)滿足an+1=an·bn+1,bn+1= (n∈N*)且點(diǎn)P1的坐標(biāo)為(1,-1).
(1)求過點(diǎn)P1,P2的直線l的方程;
(2)試用數(shù)學(xué)歸納法證明:對于n∈N*,點(diǎn)Pn都在(1)中的直線l上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,割線PBC經(jīng)過圓心O,OB=PB=1,OB繞點(diǎn)O逆時針旋轉(zhuǎn)120°到OD,連PD交圓O于點(diǎn)E,則PE=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
曲線C1的極坐標(biāo)方程為ρ=4cosθ,直線C2的參數(shù)方程為(t為參數(shù)).
(1)將C1化為直角坐標(biāo)方程;
(2)曲線C1與C2是否相交?若相交,求出弦長,若不相交,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com