4.記函數(shù)f(x)的導(dǎo)數(shù)為f(1)(x),f(1)(x)的導(dǎo)數(shù)為f(2)(x),…,f(n-1)(x)的導(dǎo)數(shù)為f(n)(x)(n∈N*),若f(x)可進(jìn)行n次求導(dǎo),則f(x)均可近似表示為:f(x)≈f(0)+$\frac{{{f^{(1)}}(0)}}{1!}x+\frac{{{f^{(2)}}(0)}}{2!}{x^2}+\frac{{{f^{(3)}}(0)}}{3!}{x^3}$+…+$\frac{{{f^{(n)}}(0)}}{n!}{x^n}$,若取n=4,根據(jù)這個結(jié)論,則可近似估計cos2≈-$\frac{1}{3}$(用分?jǐn)?shù)表示).

分析 f(x)=cosx,f(1)(x)=-sinx,f(2)(x)=-cosx,f(3)(x)=sinx,f(4)(x)=cosx,…,可得T=4,代入即可得出.

解答 解:f(x)=cosx,f(1)(x)=-sinx,f(2)(x)=-cosx,f(3)(x)=sinx,f(4)(x)=cosx,…,∴T=4,
∴當(dāng)n=4時,f(2)=cos2=f(0)+0×2+$\frac{-1}{2!}×{2}^{2}$+$\frac{0}{3!}×{2}^{4}$=-$\frac{1}{3}$.
故答案為:-$\frac{1}{3}$.

點評 本題考查了導(dǎo)數(shù)的運(yùn)算法則、三角函數(shù)的周期性,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列四個方程中表示y是x的函數(shù)的是(  )
①x=y2②y=1-x2③y=$\frac{1}{2}$x-3④y2=1-x.
A.①②B.②③C.③④D.①②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知全集U={1,2,3,4,5,6},A={2,4,5},B={1,3,5},則(∁UA)∩(∁UB)=( 。
A.[6}B.{5}C.{1,2,3,4}D.{5,6}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖所示,在三棱錐P-ABC中,PA⊥底面ABC,D是PC的中點. 已知∠BAC=$\frac{π}{2}$,AB=2,AC=2,PA=2.求:
(1)三棱錐P-ABC的體積;
(2)異面直線BC與AD所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,已知四棱錐S-ABCD中,SA⊥平面ABCD,∠ABC=∠BCD=90°,且SA=AB=BC=2CD,E是邊SB的中點.
(1)求證:CE∥平面SAD;
(2)取BC中點M,求證平面SAC⊥平面SMD;
(3)求三棱錐S-ECD與四棱錐E-ABCD的體積比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=a•lnx+b•x2的圖象在點(1,f(1))處的切線方程為x-y-1=0.
(1)求f(x)的表達(dá)式;
(2)若F(x)滿足F(x)<G(x)恒成立,則稱F(x)是G(x)的一個“游離承托函數(shù)”.
證明:函數(shù)g(x)=2af(x+t),t∈R且t≤2,是函數(shù)h(x)=ex+f(x+t)的一個“游離承托函數(shù)”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.下列函數(shù)中,在其定義域內(nèi)既是奇函數(shù)又是減函數(shù)的是( 。
A.y=$\frac{1}{x}$B.y=-x2+1C.y=-e-x-exD.y=sinx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)集合M={x|1<x<5},N={0,2,3,5},則M∩N=(  )
A.{x|2<x<4}B.{0,2,3}C.{2,3}D.{x|2<x<3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.下列命題中,真命題是①③④
①若${\overrightarrow{a}}$2+${\overrightarrow}$2=0,則$\overrightarrow{a}$=$\overrightarrow$=$\overrightarrow{0}$;                  
②若向量$\overrightarrow{a}$,$\overrightarrow$都是單位向量,則$\overrightarrow{a}$=$\overrightarrow$;
③|$\overrightarrow{a}$+$\overrightarrow$|≤|$\overrightarrow{a}$|+|$\overrightarrow$|;                     
④($\overrightarrow{a}$+$\overrightarrow$)+$\overrightarrow{c}$=$\overrightarrow{a}$+($\overrightarrow+\overrightarrow{c}$);
⑤若向量$\overrightarrow{a}$,$\overrightarrow$滿足$\overrightarrow{a}$•$\overrightarrow$>0,則$\overrightarrow{a}$與$\overrightarrow$的夾角為銳角;     
⑥$\overrightarrow{a}$⊥$\overrightarrow$?|$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$-$\overrightarrow$|

查看答案和解析>>

同步練習(xí)冊答案