設(shè)P、Q是棱長為1的正方體ABCD-A1B1C1D1的面AA1D1D與面A1B1C1D1的中心.

(1)證明PQ∥平面AA1B1B;

(2)求線段PQ的長.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知四棱錐S-ABCD的底面是邊長為4的正方形,S在底面上的射影O落在正方形ABCD內(nèi),SO的長為3,O到AB,AD的距離分別為2和1,P是SC的中點(diǎn).
(Ⅰ)求證:平面SOB⊥底面ABCD;
(Ⅱ)設(shè)Q是棱SA上的一點(diǎn),若
AQ
=
3
4
AS
,求平面BPQ與底面ABCD所成的銳二面角余弦值的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•成都一模)設(shè)正方體ABC-A1B1C1D1 的棱長為2,動點(diǎn)E,F(xiàn)在棱A1B1上,動點(diǎn)P、Q分別在棱AD、CD上,若EF=1,A1E=x,DQ=y,DP=z(x,y,z>0),則下列結(jié)論中錯誤的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)ABCD-A1B1C1D1是棱長為1的正方體,則上底面ABCD的內(nèi)切圓上的點(diǎn)P與過頂點(diǎn)A,B,C1,D1的圓上的點(diǎn)Q之間的最小距離是­­­­­­­­­­­­­­­­­­­­­___________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008-2009學(xué)年浙江省臺州市高二(下)期末數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

如圖,已知四棱錐S-ABCD的底面是邊長為4的正方形,S在底面上的射影O落在正方形ABCD內(nèi),SO的長為3,O到AB,AD的距離分別為2和1,P是SC的中點(diǎn).
(Ⅰ)求證:平面SOB⊥底面ABCD;
(Ⅱ)設(shè)Q是棱SA上的一點(diǎn),若=,求平面BPQ與底面ABCD所成的銳二面角余弦值的大小.

查看答案和解析>>

同步練習(xí)冊答案