一束光線從點(diǎn)A(-1,1)發(fā)出,并經(jīng)過x軸反射,到達(dá)圓(x-2)2+(y-3)2=1上一點(diǎn)的最短路程是   
【答案】分析:根據(jù)對(duì)稱變換的原則,我們可以將本題轉(zhuǎn)化為求從點(diǎn)A(-1,-1)發(fā)出,并經(jīng)過x軸反射,到達(dá)圓(x-2)2+(y-3)2=1上一點(diǎn)的最短路程,利用兩點(diǎn)之間距離公式,我們求出點(diǎn)到圓心的距離,減去半徑即可得到答案.
解答:解:一束光線從點(diǎn)A(-1,1)發(fā)出,并經(jīng)過x軸反射,其光線所在的直線方程過點(diǎn)A關(guān)于X軸的對(duì)稱點(diǎn)B,
則B點(diǎn)到圓(x-2)2+(y-3)2=1圓心(2,3)的距離為=5,
則B點(diǎn)到(x-2)2+(y-3)2=1上一點(diǎn)的最短路程為5-1=4,
故答案為4.
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是直線與圓的位置關(guān)系,其中根據(jù)對(duì)稱變換的原則,將已知問題轉(zhuǎn)化為求從點(diǎn)A(-1,-1)發(fā)出,并經(jīng)過x軸反射,到達(dá)圓(x-2)2+(y-3)2=1上一點(diǎn)的最短路程,是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l:x-y+3=0,一束光線從點(diǎn)A(1,2)處射向x軸上一點(diǎn)B,又從B點(diǎn)反射到l上一點(diǎn)C,最后又從C點(diǎn)反射回A點(diǎn).
(Ⅰ)試判斷由此得到的△ABC是有限個(gè)還是無限個(gè)?
(Ⅱ)依你的判斷,認(rèn)為是無限個(gè)時(shí)求出所以這樣的△ABC的面積中的最小值;認(rèn)為是有限個(gè)時(shí)求出這樣的線段BC的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一束光線從點(diǎn)A(-1,1)出發(fā),經(jīng)x軸反射到圓C:(x-2)2+(y-3)2=1上的最短路程是( 。
A、3
2
-1
B、2
6
C、4
D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一束光線從點(diǎn)A(-1,1)發(fā)出,并經(jīng)過x軸反射,到達(dá)圓(x-2)2+(y-3)2=1上一點(diǎn)的最短路程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一束光線從點(diǎn)A(-1,0)出發(fā),經(jīng)過直線l:2x-y+3=0上的一點(diǎn)D反射后,經(jīng)過點(diǎn)B(1,0).
(1)求以A,B為焦點(diǎn)且經(jīng)過點(diǎn)D的橢圓C的方程;
(2)過點(diǎn)B(1,0)作直線l交橢圓C于P、Q兩點(diǎn),以AP、AQ為鄰邊作平行四邊形APRQ,求對(duì)角線AR長度的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一束光線從點(diǎn)A(-1,1)發(fā)出,經(jīng)x軸反射到圓C:(x-2)2+(y-3)2=1上,最短路程是(    )

A.4                 B.5                 C.3-1            D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案