【題目】如圖,在幾何體中, 平面 平面, , ,又,

1)求 與平面所成角的正弦值;

2)求平面與平面所成的銳二面角的余弦值.

【答案】12

【解析】試題分析:

(1)建立空間直角坐標(biāo)系,求出平面的法向量,利用公式即可;

(2)利用坐標(biāo),求兩個半平面所在平面的法向量,根據(jù)公式求解即可.

試題解析:

(1)如圖,過點 的垂線交,以為原點,

分別以軸建立空間直角坐標(biāo)系.

,

,則點軸的距離為1,到軸的距離為

則有, , .

1)設(shè)平面的法向量為,

則有,取

,又,

設(shè)與平面所成角為

,

與平面所成角的正弦值為.

2)設(shè)平面的法向量為,

,

則有,取,

故平面與平面所成的銳二面角的余弦值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在R上的單調(diào)增函數(shù)f(x),對任意x,y∈R都有f(x+y)=f(x)+f(y).
(1)判斷函數(shù)f(x)的奇偶性;
(2)若f(k3x)+f(3x﹣9x﹣2)<0對任意x∈R恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(x﹣a)(x﹣b)(其中a>b),若f(x)的圖象如圖所示,則函數(shù)g(x)=ax+b的圖象大致為(

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中, 成等差數(shù)列是的( )

A. 充分不必要條件 B. 必要不充分條件 C. 充要條件 D. 既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大理石工廠初期花費98萬元購買磨大理石刀具,第一年需要各種費用12萬元,從第二年起,每年所需費用比上一年增加4萬元,該大理石加工廠每年總收入50萬元.

(1)到第幾年末總利潤最大,最大值是多少?

(2)到第幾年末年平均利潤最大,最大值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知坐標(biāo)平面上點與兩個定點 的距離之比等于5.

(1)求點的軌跡方程,并說明軌跡是什么圖形;

2)記(1)中的軌跡為,過點的直線所截得的線段的長為 8,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)f(x)=ax2+bx+c(a≠0)的圖象過點(0,1)且與x軸有唯一的交點(﹣1,0).
(1)求f(x)的表達式;
(2)在(1)的條件下,設(shè)函數(shù)F(x)=f(x)﹣mx,若F(x)在區(qū)間[﹣2,2]上是單調(diào)函數(shù),求實數(shù)m的取值范圍;
(3)設(shè)函數(shù)g(x)=f(x)﹣kx,x∈[﹣2,2],記此函數(shù)的最小值為h(k),求h(k)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),若方程恰有兩個不相等的實根,則的最大值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知分別是雙曲線E 的左、右焦點,P是雙曲線上一點, 到左頂點的距離等于它到漸近線距離的2倍,(1)求雙曲線的漸近線方程;(2)當(dāng)時, 的面積為,求此雙曲線的方程。

查看答案和解析>>

同步練習(xí)冊答案