(2010•廣東模擬)已知a>0,b>0,函數(shù)f(x)=x2+(ab-a-4b)x+ab是偶函數(shù),則f(x)的圖象與y軸交點縱坐標的最小值為(  )
分析:根據(jù)函數(shù)f(x)為偶函數(shù),可得a,b滿足ab=a+4b,利用均值定理求出ab的最小值,而f(x)的圖象與y軸交點縱坐標就是ab,所以可得f(x)的圖象與y軸交點縱坐標的最小值.
解答:解:∵函數(shù)f(x)=x2+(ab-a-4b)x+ab是偶函數(shù),∴ab-a-4b=0,
∴ab=a+4b,∵a>0,b>0,∴a+4b≥2
a•4b
=4
ab
,即ab≥4
ab
,
ab
=t,∴t2≥4t,t≥4,即
ab
≥4,ab≥16
令函數(shù)f(x)=x2+(ab-a-4b)x+ab中x=0,得,f(0)=ab,∴f(x)的圖象與y軸交點縱坐標為ab,
∵ab≥4
ab
,∴f(x)的圖象與y軸交點縱坐標的最小值為16.
故答案為A
點評:本題主要考查函數(shù)奇偶性的判斷,以及利用均值定理求最值,屬于函數(shù)性質(zhì)與不等式的綜合.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2010•廣東模擬)函數(shù)f(x)=cos(-
x
2
)+sin(π-
x
2
).x∈R
(1)求f(x)的周期;
(2)求f(x)在[0,π)上的減區(qū)間;
(3)若f(a)=
2
10
5
,a∈(0,
π
2
),求tan(2a+
π
4
)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•廣東模擬)設(shè)x、y、z是空間不同的直線或平面,對下列四種情形:
①x、y、z均為直線;②x、y是直線,z是平面;③z是直線,x、y是平面;④x、y、z均為平面.其中使“x⊥z且y⊥z⇒x∥y”為真命題的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•廣東模擬)函數(shù)y=e2x圖象上的點到直線2x-4y-4=0距離的最小值是
5
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•廣東模擬)如果(3x2-
2x3
)n
的展開式中含有非零常數(shù)項,則正整數(shù)n的最小值為
5
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•廣東模擬)不等式1<|x+2|<5的解集是( 。

查看答案和解析>>

同步練習冊答案