分析 根據(jù)f(x)的對稱性可知f(x)在(0,+∞)上有兩個零點(diǎn),利用二次函數(shù)的性質(zhì)列出不等式組即可解出a的范圍.
解答 解:∵f(-x)=(-x)2-|-x|+a-1=x2-|x|+a-1=f(x),
∴f(x)是偶函數(shù),
∵f(x)的圖象與x軸有四個交點(diǎn),
∴當(dāng)x>0時,f(x)=x2-x+a-1有2個零點(diǎn),
∵f(x)=x2-x+a-1的圖象開口向上,對稱軸為x=$\frac{1}{2}$,
∴$\left\{\begin{array}{l}{f(0)>0}\\{f(\frac{1}{2})<0}\end{array}\right.$,即$\left\{\begin{array}{l}{a-1>0}\\{a-\frac{5}{4}<0}\end{array}\right.$,解得:1$<a<\frac{5}{4}$.
故答案為(1,$\frac{5}{4}$).
點(diǎn)評 本題考查了函數(shù)零點(diǎn)與函數(shù)圖象的關(guān)系,二次函數(shù)的圖象與性質(zhì),屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{15}+\sqrt{3}}}{8}$ | B. | $\frac{{\sqrt{15}-\sqrt{3}}}{8}$ | C. | $\frac{{-\sqrt{15}+\sqrt{3}}}{8}$ | D. | $\frac{{-\sqrt{15}-\sqrt{3}}}{8}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com