3.若x,y滿足$\left\{{\begin{array}{l}{x-y≥0}\\{x+y≤1}\\{y≥0}\end{array}}\right.$,則z=x+2y的最大值為2.

分析 作出不等式對應的平面區(qū)域,利用線性規(guī)劃的知識,通過平移即可求z的最大值.

解答 解:作出不等式對應的平面區(qū)域,
由z=x+2y,得y=-$\frac{1}{2}x+\frac{z}{2}$,
平移直線y=-$\frac{1}{2}x+\frac{z}{2}$,由圖象可知當直線y=-$\frac{1}{2}x+\frac{z}{2}$經(jīng)過點A時,直線y=-$\frac{1}{2}x+\frac{z}{2}$的截距最大,此時z最大.
由$\left\{\begin{array}{l}{x-y=0}\\{x+y=1}\end{array}\right.$,得$\left\{\begin{array}{l}{x=\frac{1}{2}}\\{y=\frac{1}{2}}\end{array}\right.$,
即A($\frac{1}{2}$,$\frac{1}{2}$),
此時z的最大值為z=1+2×$\frac{1}{2}$=1+1=2,
故答案為:2.

點評 本題主要考查線性規(guī)劃的應用,利用數(shù)形結合是解決線性規(guī)劃題目的常用方法.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

13.函數(shù)y=2-x與$y=-{log_{\frac{1}{2}}}({-x})$圖象的大致形狀是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.我國明朝著名數(shù)學家程大位在其名著《算法統(tǒng)宗》中記載了如下數(shù)學問題:“遠看巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈”.詩中描述的這個寶塔古稱浮屠,本題說它一共有7層,每層懸掛的紅燈數(shù)是上一層的2倍,共有381盞燈,那么塔頂有( 。┍K燈.
A.2B.3C.5D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.設實數(shù)x,y滿足$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}≥1}\\{0≤x≤1}\\{0≤y≤1}\end{array}\right.$,則x+y取得最小值時的最優(yōu)解的個數(shù)是( 。
A.1B.2C.3D.無數(shù)個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.設數(shù)列{an}的前n項和為Sn,且Sn=$\frac{n(n+1)}{2}$.
(1)求數(shù)列{an}的通項公式;
(2)令bn=2${\;}^{{a}_{n}}$+$\frac{2}{{a}_{n}{a}_{n+1}}$(n=1,2,3,…),其前n項和為Tn,如果對任意的n∈N*,都有Tn+2t≥t2成立,求Tn的表達式及實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.函數(shù)f(x)=x2-|x|+a-1的圖象與x軸有四個交點,則a的取值范是(1,$\frac{5}{4}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.對于下列命題:
①若關于x的不等式ax2+2ax+1>0恒成立,則a∈(0,1);
②已知函數(shù)f(x)=log2$\frac{a-x}{1+x}$為奇函數(shù),則實數(shù)a的值為1;
③設a=sin$\frac{2014π}{3},b=cos\frac{2014π}{3},c=tan\frac{2014π}{3}$,則a<b<c;
④已知P為三角形ABC內部任一點(不包括邊界),滿足$({\overrightarrow{PB}-\overrightarrow{PA}})•({\overrightarrow{PB}+\overrightarrow{PA}-2\overrightarrow{PC}})=0,則△ABC$必定是等腰三角形.
其中正確命題的序號是②③④(請將所有正確命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.若函數(shù)f(x)=ax2-4x+c的值域為[1,+∞),則$\frac{1}{c-1}+\frac{9}{a}$的最小值為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知定義在R上的奇函數(shù)f(x)和偶函數(shù)g(x),滿足f(x)+g(x)=2x
(Ⅰ)求f(x),g(x);
(Ⅱ)求證g(x)在[0,+∞)上為增函數(shù);
(Ⅲ)求函數(shù)g(x)+g(2x)的最小值.

查看答案和解析>>

同步練習冊答案