12.能推出{an}是遞增數(shù)列的是( 。
A.{an}是等差數(shù)列且$\left\{{\frac{a_n}{n}}\right\}$遞增
B.Sn是等差數(shù)列{an}的前n項(xiàng)和,且$\left\{{\frac{S_n}{n}}\right\}$遞增
C.{an}是等比數(shù)列,公比為q>1
D.等比數(shù)列{an},公比為0<q<1

分析 利用等差數(shù)列與等比數(shù)列的通項(xiàng)公式求和公式及其單調(diào)性即可判斷出結(jié)論.

解答 解:對(duì)于B:Sn=$n{a}_{1}+\frac{n(n-1)}{2}d$,$\frac{{S}_{n}}{n}$=a1+$\frac{n-1}{2}d$,
∵$\left\{{\frac{S_n}{n}}\right\}$遞增,∴d>0,因此{(lán)an}是遞增數(shù)列.
故選:B.

點(diǎn)評(píng) 本題考查了等差數(shù)列與等比數(shù)列的通項(xiàng)公式求和公式及其單調(diào)性,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.用一個(gè)平面去截一個(gè)幾何體,得到的截面不可能是圓的幾何體是( 。
A.圓錐B.圓柱C.D.三棱錐

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.圓心在x軸上且與直線l:y=2x+1切于點(diǎn)P(0,1)的圓C的標(biāo)準(zhǔn)方程為(x-2)2+y2=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.如圖所示,在平行四邊形ABCD中,AB=4,AD=3,E是邊CD的中點(diǎn),$\overrightarrow{DF}$=$\frac{1}{3}$$\overrightarrow{DA}$,若$\overrightarrow{AE}$•$\overrightarrow{BF}$=-4,則sin∠BAD=$\frac{\sqrt{15}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.直線$\frac{x}{a}-\frac{y}=1$在y軸上的截距是(  )
A.aB.bC.-aD.-b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知?jiǎng)又本l的方程:cosα•(x-2)+sinα•(y+1)=1(α∈R),給出如下結(jié)論:
①動(dòng)直線l恒過(guò)某一定點(diǎn);
②存在不同的實(shí)數(shù)α1,α2,使相應(yīng)的直線l1,l2平行;
③坐標(biāo)平面上至少存在兩個(gè)點(diǎn)都不在動(dòng)直線l上;
④動(dòng)直線l可表示坐標(biāo)平面上除x=2,y=-1之外的所有直線;
⑤動(dòng)直線l可表示坐標(biāo)平面上的所有直線;
其中正確結(jié)論的序號(hào)是②③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.記a=sin1,b=sin2,c=sin3,則( 。
A.c<b<aB.c<a<bC.a<c<bD.a<b<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.$tan(-\frac{7π}{6})$=-$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.“健步走”是一種方便而又有效的鍛煉方式,李老師每天堅(jiān)持“健步走”,并用計(jì)步器進(jìn)行統(tǒng)計(jì).他最近8天“健步走”步數(shù)的條形統(tǒng)計(jì)圖及相應(yīng)的消耗能量數(shù)據(jù)表如表:
步數(shù)(千卡)16171819
消耗能量(卡路里)400440480520
(1)求李老師這8天“健步走”步數(shù)的平均數(shù);
(2)從步數(shù)為16千步,17千步,18千步的6天中任選2天,設(shè)李老師這2天通過(guò)“健步走”消耗的能量和為X,求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案