【題目】隨機(jī)擲兩枚質(zhì)地均勻的骰子,它們向上的點(diǎn)數(shù)之和不超過5的概率為

【答案】
【解析】解:一共有36種等可能的結(jié)果,即∵同時(shí)向上擲兩枚骰子,向上的點(diǎn)數(shù)之和共有以下36種結(jié)果: (1,1),(1,2),(1,3),(1,4),(1,5),(1,6)
(2,1),(2,2),(2,3),(2,4),(2,5),(2,6)
(3,1),(3,2),(3,3),(3,4),(3,5),(3,6)
(4,1),(4,2),(4,3),(4,4),(4,5),(4,6)
(5,1),(5,2),(5,3),(5,4),(5,5),(5,6)
(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)
兩個(gè)骰子點(diǎn)數(shù)之和不超過5的有10種情況,即(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(3,1),(3,2),(4,1)
所以向上的點(diǎn)數(shù)之和不超過5的概率為
所以答案是:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了在夏季降溫和冬季供暖時(shí)減少能源損耗,房屋的屋頂和外墻需要建造隔熱層.某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元.該建筑物每年的能源消耗費(fèi)用C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關(guān)系:C(x)= (0≤x≤10),若不建隔熱層,每年能源消耗費(fèi)用為8萬元.設(shè)f(x)為隔熱層建造費(fèi)用與20年的能源消耗費(fèi)用之和.
(Ⅰ)求k的值及f(x)的表達(dá)式.
(Ⅱ)隔熱層修建多厚時(shí),總費(fèi)用f(x)達(dá)到最小,并求最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=cos2x+ sinxcosx.
(Ⅰ)求函數(shù)f(x)的最小正周期及單調(diào)遞增區(qū)間;
(Ⅱ)求f(x)在區(qū)間[﹣ , ]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列{an}的公差為2,前n項(xiàng)和為Sn , 且S1 , S2 , S4成等比數(shù)列. (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)令bn=(﹣1)n1 ,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓C: + =1(a>b>0)的離心率為 ,短軸端點(diǎn)與橢圓的兩個(gè)焦點(diǎn)所構(gòu)成的三角形面積為1,過點(diǎn)D(0,2)且斜率為k的直線l交橢圓于A,B兩點(diǎn).
(1)求橢圓C的方程;
(2)是否存在定點(diǎn) ,使 恒為定值.若存在求出這個(gè)定值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)點(diǎn)O是平行四邊形ABCD兩條對角線的交點(diǎn),給出下列向量組:

;


其中可作為該平面其他向量基底的是( )
A.①②
B.①③
C.①④
D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)y=f(x)的定義域?yàn)閧x|﹣2≤x≤3,且x≠2},值域?yàn)閧y|﹣1≤y≤2,且y≠0},則y=f(x)的圖象可能是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線y=﹣x+1與橢圓 + =1(a>b>0)相交于A、B兩點(diǎn),且線段AB的中點(diǎn)在直線l:x﹣2y=0上,求此橢圓的離心率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在R上的函數(shù)f(x)滿足f(0)=0,f(x)+f(1﹣x)=1,f( )= f(x)且當(dāng)0≤x1<x2≤1時(shí),f(x1)≤f(x2),則f( )等于(
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案