在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,若
cosB
b
=
cosA
a
,則△ABC的形狀一定是( 。
分析:已知等式利用正弦定理化簡,整理后利用兩角和與差的正弦函數(shù)公式化簡,利用特殊角的三角函數(shù)值得到A=B,即可確定出三角形為等腰三角形.
解答:解:將
cosB
b
=
cosA
a
利用正弦定理化簡得:
cosB
sinB
=
cosA
sinA
,即sinAcosB=cosAsinB,
變形得:sinAcosB-cosAsinB=sin(A-B)=0,
∵A、B為三角形內(nèi)角,
∴A-B=0,即A=B,
則△ABC為等腰三角形.
故選A
點(diǎn)評:此題考查了三角形形狀的判斷,涉及的知識有:正弦定理,兩角和與差的正弦函數(shù)公式,熟練掌握定理及公式是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•天津)在△ABC中,內(nèi)角A,B,C所對的邊分別是a,b,c,已知a=2,c=
2
,cosA=-
2
4

(1)求sinC和b的值;
(2)求cos(2A+
π
3
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,內(nèi)角A、B、C所對邊長分別為a、b、c,已知a2-c2=b,且sinAcosC=3cosAsinC,則b=
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且a,b是方程x2-2
3
x+2=0的兩根,2cos(A+B)=1,則△ABC的面積為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,內(nèi)角A,B,C所對的邊分別是a,b,c.已知A=45°,a=6,b=3
2
,則B的大小為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,內(nèi)角A,B,C所對的邊分別是a,b,c,已知B=60°,不等式x2-4x+1<0的解集為{x|a<x<c},則b=
13
13

查看答案和解析>>

同步練習(xí)冊答案