【題目】已知橢圓C1: +y2=1,橢圓C2以C1的長軸為短軸,且與C1有相同的離心率.
(1)求橢圓C2的方程;
(2)設(shè)O為坐標(biāo)原點(diǎn),點(diǎn)A,B分別在橢圓C1和C2上, =2
,求直線AB的方程.
【答案】
(1)解:橢圓 的長軸長為4,離心率為
∵橢圓C2以C1的長軸為短軸,且與C1有相同的離心率
∴橢圓C2的焦點(diǎn)在y軸上,2b=4,為
∴b=2,a=4
∴橢圓C2的方程為 ;
(2)解:設(shè)A,B的坐標(biāo)分別為(xA,yA),(xB,yB),
∵ =2
∴O,A,B三點(diǎn)共線,且點(diǎn)A,B不在y軸上
∴設(shè)AB的方程為y=kx
將y=kx代入 ,消元可得(1+4k2)x2=4,∴
將y=kx代入 ,消元可得(4+k2)x2=16,∴
∵ =2
,∴
=4
,
∴ ,解得k=±1,
∴AB的方程為y=±x
【解析】(1)求出橢圓 的長軸長,離心率,根據(jù)橢圓C2以C1的長軸為短軸,且與C1有相同的離心率,即可確定橢圓C2的方程;(2)設(shè)A,B的坐標(biāo)分別為(xA , yA),(xB , yB),根據(jù)
=2
,可設(shè)AB的方程為y=kx,分別與橢圓C1和C2聯(lián)立,求出A,B的橫坐標(biāo),利用
=2
,即可求得直線AB的方程.
【考點(diǎn)精析】利用橢圓的標(biāo)準(zhǔn)方程對題目進(jìn)行判斷即可得到答案,需要熟知橢圓標(biāo)準(zhǔn)方程焦點(diǎn)在x軸:,焦點(diǎn)在y軸:
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了調(diào)查我市在校中學(xué)生參加體育運(yùn)動的情況,從中隨機(jī)抽取了16名男同學(xué)和14 名女同學(xué),調(diào)查發(fā)現(xiàn),男、女同學(xué)中分別有12人和6人喜愛運(yùn)動,其余不喜愛.
(1)根據(jù)以上數(shù)據(jù)完成以下列聯(lián)表:
(2)根據(jù)列聯(lián)表的獨(dú)立性檢驗(yàn),能否在犯錯(cuò)誤的概率不超過0.010的前提下認(rèn)為性別與喜愛運(yùn)動有關(guān)?
(3)將以上統(tǒng)計(jì)結(jié)果中的頻率視作概率,從我市中學(xué)生中隨機(jī)抽取3人,若其中喜愛運(yùn)動的人數(shù)為,求
的分布列和均值.
參考數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】傳承傳統(tǒng)文化再掀熱潮,央視科教頻道以詩詞知識競賽為主的《中國詩詞大會》火爆熒屏.將中學(xué)組和大學(xué)組的參賽選手按成績分為優(yōu)秀、良好、一般三個(gè)等級,隨機(jī)從中抽取了100名選手進(jìn)行調(diào)查,如圖是根據(jù)調(diào)查結(jié)果繪制的選手等級人數(shù)的條形圖.
(1)若將一般等級和良好等級合稱為合格等級,根據(jù)已知條件完成列聯(lián)表,并據(jù)此資料你是否有
的把握認(rèn)為選手成績“優(yōu)秀”與文化程度有關(guān)?
注:,其中
.
(2)若江西參賽選手共80人,用頻率估計(jì)概率,試估計(jì)其中優(yōu)秀等級的選手人數(shù);
(3)如果在優(yōu)秀等級的選手中取4名,在良好等級的選手中取2名,再從這6人中任選3人組成一個(gè)比賽團(tuán)隊(duì),求所選團(tuán)隊(duì)中有2名選手的等級為優(yōu)秀的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的通項(xiàng)公式是
,若將數(shù)列
中的項(xiàng)從小到大按如下方式分組:第一組:
,第二組:
,第三組:
,…,則2018位于第________組.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系中,過點(diǎn)
的直線
的參數(shù)方程為
(
為參數(shù)).以原點(diǎn)
為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)求直線的普通方程和曲線
的直角坐標(biāo)方程;
(2)若直線與曲線
相交于
,
兩點(diǎn),求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校選派甲、乙、丙、丁、戊5名學(xué)生代表學(xué)校參加市級“演講”和“詩詞”比賽,下面是他們的一段對話.甲說:“乙參加‘演講’比賽”;乙說:“丙參加‘詩詞’比賽”;丙說“丁參加‘演講’比賽”;丁說:“戊參加‘詩詞’比賽”;戊說:“丁參加‘詩詞’比賽”.
已知這5個(gè)人中有2人參加“演講”比賽,有3人參加“詩詞”比賽,其中有2人說的不正確,且參加“演講”的2人中只有1人說的不正確.根據(jù)以上信息,可以確定參加“演講”比賽的學(xué)生是
A. 甲和乙 B. 乙和丙 C. 丁和戊 D. 甲和丁
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】符號表示不大于
的最大整數(shù)(
),例如:
(1)已知,分別求兩方程的解集
;
(2)設(shè)方程的解集為
,集合
,若
,求
的取值范圍.
(3)在(2)的條件下,集合,是否存在實(shí)數(shù)
,
,若存在,請求出實(shí)數(shù)
的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)求證: .
(2)某同學(xué)在一次研究性學(xué)習(xí)中發(fā)現(xiàn),以下五個(gè)式子的值都等于同一個(gè)常數(shù):
sin213°+cos217°-sin13°cos17°;
sin215°+cos215°-sin15°cos15°;
sin218°+cos212°-sin18°cos12°;
sin2(-18°)+cos248°-sin(-18°)cos48°;
sin2(-25°)+cos255°-sin(-25°)cos55°.
①試從上述五個(gè)式子中選擇一個(gè),求出這個(gè)常數(shù);
②根據(jù)①的計(jì)算結(jié)果,將該同學(xué)的發(fā)現(xiàn)推廣為三角恒等式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高三年級舉行了一次全年級的大型考試,在數(shù)學(xué)成績優(yōu)秀和非優(yōu)秀的學(xué)生中,物理、化學(xué)、總分成績也為優(yōu)秀的人數(shù)如下表所示,則我們能以99%的把握認(rèn)為數(shù)學(xué)成績優(yōu)秀與物理、化學(xué)、總分成績優(yōu)秀有關(guān)系嗎?
物理優(yōu)秀 | 化學(xué)優(yōu)秀 | 總分優(yōu)秀 | |
數(shù)學(xué)優(yōu)秀 | 228 | 225 | 267 |
數(shù)學(xué)非優(yōu)秀 | 143 | 156 | 99 |
注:該年級此次考試中數(shù)學(xué)成績優(yōu)秀的有360人,非優(yōu)秀的有880人.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com