已知圓C1的圓心在坐標原點O,且恰好與直線l1相切.
(Ⅰ)求圓的標準方程;
(Ⅱ)設點A(x,y)為圓上任意一點,AN⊥x軸于N,若動點Q滿足,(其中m+n=1,m,n≠0,m為常數(shù)),試求動點Q的軌跡方程C2;
(Ⅲ)在(Ⅱ)的結論下,當時,得到曲線C,問是否存在與l1垂直的一條直線l與曲線C交于B、D兩點,且∠BOD為鈍角,請說明理由.
【答案】分析:(Ⅰ)根據(jù)圓與直線l1相切,利用點到直線的距離,求出圓的半徑,從而可求圓C1的方程;
(Ⅱ)設出點的坐標,利用向量條件,確定動點坐標之間的關系,利用A為圓上的點,即可求得動點Q的軌跡方程C2
(Ⅲ)時,曲線C方程為,假設直線l的方程,與橢圓聯(lián)立,利用韋達定理及向量條件,利用數(shù)量積小于0,即可得到結論.
解答:解:(Ⅰ)設圓的半徑為r,圓心到直線l1距離為d,則…(2分)
所以圓C1的方程為x2+y2=4…(3分)
(Ⅱ)設動點Q(x,y),A(x,y),AN⊥x軸于N,N(x,0)
由題意,(x,y)=m(x,y)+n(x,0),所以…(5分)
即:,將代入x2+y2=4,得…(7分)
(Ⅲ)時,曲線C方程為,假設存在直線l與直線l1垂直,
設直線l的方程為y=-x+b…(8分)
設直線l與橢圓交點B(x1,y1),D(x2,y2
聯(lián)立得:,得7x2-8bx+4b2-12=0…(9分)
因為△=48(7-b2)>0,解得b2<7,且…(10分)
=
==…(12分)
因為∠BOD為鈍角,所以且b≠0,
解得且b≠0,滿足b2<7
且b≠0,
所以存在直線l滿足題意…(14分)
點評:本題考查圓的標準方程,考查代入法求軌跡方程,考查直線與橢圓的位置關系,考查向量知識的運用,解題的關鍵是直線與橢圓方程聯(lián)立,利用韋達定理進行求解.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知圓C1的圓心在坐標原點O,且恰好與直線l1x-y-2
2
=0
相切.
(Ⅰ)求圓的標準方程;
(Ⅱ)設點A(x0,y0)為圓上任意一點,AN⊥x軸于N,若動點Q滿足
OQ
=m
OA
+n
ON
,(其中m+n=1,m,n≠0,m為常數(shù)),試求動點Q的軌跡方程C2
(Ⅲ)在(Ⅱ)的結論下,當m=
3
2
時,得到曲線C,問是否存在與l1垂直的一條直線l與曲線C交于B、D兩點,且∠BOD為鈍角,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•吉林二模)已知圓C1的圓心在坐標原點O,且恰好與直線l1x-y-2
2
=0
相切.
(1)求圓的標準方程;
(2)設點A為圓上一動點,AN⊥x軸于N,若動點Q滿足:
OQ
=m
OA
+(1-m)
ON
,(其中m為非零常數(shù)),試求動點Q的軌跡方程C2
(3)在(2)的結論下,當m=
3
2
時,得到曲線C,與l1垂直的直線l與曲線C交于B、D兩點,求△OBD面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:吉林省模擬題 題型:解答題

已知圓C1的圓心在坐標原點O,且恰好與直線l1:x-y-2=0相切,
(Ⅰ)求圓的標準方程;
(Ⅱ)設點A為圓上一動點,AN⊥x軸于N,若動點Q滿足,(其中m為非零常數(shù)),試求動點Q的軌跡方程C2;
(Ⅲ)在(Ⅱ)的結論下,當時,得到曲線C,與l1垂直的直線l與曲線C交于B、D兩點,求△OBD面積的最大值。

查看答案和解析>>

科目:高中數(shù)學 來源:期末題 題型:解答題

已知圓C1的圓心在坐標原點O,且恰好與直線l1相切.
(Ⅰ)求圓的標準方程;
(Ⅱ)設點A(x0,y0)為圓上任意一點,AN⊥x軸于N,若動點Q滿足,(其中m+n=1,m,n≠0,m為常數(shù)),試求動點Q的軌跡方程C2;
(Ⅲ)在(Ⅱ)的結論下,當時,得到曲線C,問是否存在與l1垂直的一條直線l與曲線C交于B、D兩點,且∠BOD為鈍角,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:《圓與方程》2013年山西省高考數(shù)學一輪單元復習(解析版) 題型:解答題

已知圓C1的圓心在坐標原點O,且恰好與直線l1相切.
(Ⅰ)求圓的標準方程;
(Ⅱ)設點A(x,y)為圓上任意一點,AN⊥x軸于N,若動點Q滿足,(其中m+n=1,m,n≠0,m為常數(shù)),試求動點Q的軌跡方程C2;
(Ⅲ)在(Ⅱ)的結論下,當時,得到曲線C,問是否存在與l1垂直的一條直線l與曲線C交于B、D兩點,且∠BOD為鈍角,請說明理由.

查看答案和解析>>

同步練習冊答案