15.設(shè)函數(shù)f(x)=e3x-1,則f″($\frac{1}{3}$)=9.

分析 利用復(fù)合函數(shù)的求導(dǎo)法則解答即可.

解答 解:因?yàn)楹瘮?shù)f(x)=e3x-1,所以f'(x)=3e3x-1,則f″(x)=9e3x-1,則f″($\frac{1}{3}$)=$9×{e}^{3×\frac{1}{3}-1}=9×{e}^{0}$=9;
故答案為:9.

點(diǎn)評(píng) 本題考查了復(fù)合函數(shù)的求導(dǎo)運(yùn)算;屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.Rt△ABC中,斜邊BC為6,以BC的中點(diǎn)O為圓心,作半徑為2的圓,分別交BC于P、Q兩點(diǎn),則|AP|2+|AQ|2+|PQ|2=42.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若拋物線y2=2px的焦點(diǎn)與圓x2+y2-4x=0的圓心重合,則p的值為( 。
A.-2B.2C.-4D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在區(qū)間[0,1]上給定曲線y=x2.試在此區(qū)間內(nèi)確定點(diǎn)t的值,使圖中的陰影部分的面積S1與S2之和最小,并求最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.直線l與直線3x-2y=6平行,且直線l在x軸上的截距比在y軸上的截距大1,則直線l的方程為15x-10y-6=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.過點(diǎn)P(-1,2),傾斜角為135°的直線方程為( 。
A.x+y-1=0B.x-y+1=0C.x-y-1=0D.x+y+1=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知不等式$\frac{1}{x-1}$<1的解集為p,不等式x2+(a-1)x-a>0的解集為q,若q是p的必要不充分條件,則實(shí)數(shù)a的取值范圍是( 。
A.[-2,-1]B.(-2,-1]C.[-3,1]D.[-2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知復(fù)數(shù)z=-2i+$\frac{3-i}{i}$,則復(fù)數(shù)z的共軛復(fù)數(shù)$\overline z$在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.某班級(jí)參加學(xué)校三個(gè)社團(tuán)的人員分布如表:
社團(tuán)圍棋戲劇足球
人數(shù)10mn
已知從這些同學(xué)中任取一人,得到是參加圍棋社團(tuán)的同學(xué)的概率為$\frac{5}{13}$.
(1)求從中任抽一人,抽出的是參加戲劇社團(tuán)或足球社團(tuán)的同學(xué)的概率;
(2)若從中任抽一人,抽出的是參加圍棋社團(tuán)或足球社團(tuán)的同學(xué)的概率為$\frac{11}{13}$,求m和n的值.

查看答案和解析>>

同步練習(xí)冊答案