A. | (-∞,-2) | B. | (1+2√2,+∞) | C. | (−∞,−2]∪[1+2√2,+∞) | D. | (−∞,−2)∪(1+2√2,+∞) |
分析 首先根據(jù)函數(shù)的表達(dá)式畫出函數(shù)的圖象,從而根據(jù)圖象判斷函數(shù)與直線的公共點(diǎn)的情況,最后結(jié)合兩曲線相切與方程有唯一解的關(guān)系即可求得實(shí)數(shù)a的取值范圍.
解答 解:畫出函數(shù)g(x)=2x+1和y=|x-a|的圖象,
(如圖)
由圖可知,當(dāng)且僅當(dāng)直線y=a-x與函數(shù)y=2x的圖象相切時(shí),{y=2x+1y=|x−a|有2解,∴此時(shí)a>2,
x<a,y=a-x代入y=2x+1,可得:
x2+(1-a)x+2=0,
△=(1-a)2-8=0,解得a=1+2√2,要有3個(gè)交點(diǎn),可得a>1+2√2,
函數(shù)y=2x+1和y=|x-a|的圖象有三個(gè)不同的公共點(diǎn),則實(shí)數(shù)a的取值范圍是a<-2.
綜上a∈(−∞,−2)∪(1+2√2,+∞).
故選:D.
點(diǎn)評 本題主要考查函數(shù)的零點(diǎn)以及數(shù)形結(jié)合方法,數(shù)形結(jié)合是數(shù)學(xué)解題中常用的思想方法,本題由于使用了數(shù)形結(jié)合的方法,使得問題便迎刃而解,且解法簡捷.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {1,2,3,4} | B. | {2,4,6,8} | C. | {1,2,4,8} | D. | {2,4,8} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | \frac{π}{6} | B. | \frac{π}{3} | C. | \frac{2π}{3} | D. | \frac{5π}{6} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {0,1} | B. | {2} | C. | {1,2} | D. | {0,1,2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,e) | B. | [e,+∞) | C. | [\frac{3}{2e},3] | D. | (2,e] |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com