函數(shù)y=f(x),x∈[-2,2]圖象如下圖所示,f(x)是周期函數(shù)嗎?

解析:在周期函數(shù)y=f(x)中,T是周期,若x是定義域內(nèi)的一個(gè)值,則x+kT(k∈Z且k≠0)也一定屬于定義域,因此周期函數(shù)的定義域一定是無(wú)限集,而且定義域一定無(wú)上界或者無(wú)下界.

答案:不是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

14、有六個(gè)命題:
①如果函數(shù)y=f(x)滿(mǎn)足f(a+x)=f(a-x),則y=f(x)圖象關(guān)于x=a對(duì)稱(chēng);②如果函數(shù)f(x)滿(mǎn)足f(a+x)=f(a-x),則y=f(x)的圖象關(guān)于x=0對(duì)稱(chēng);③如果函數(shù)y=f(x)滿(mǎn)足f(2a-x)=f(x),則y=f(x)的圖象關(guān)于x=a對(duì)稱(chēng);④函數(shù)y=f(x)與
f(2a-x)的圖象關(guān)于x=a對(duì)稱(chēng);⑤函數(shù)y=f(a-x)與y=f(a+x)的圖象關(guān)于x=a對(duì)稱(chēng);⑥函數(shù)y=f(a-x)與y=f(a+x)的圖象關(guān)于x=0對(duì)稱(chēng).則正確的命題是
①③④⑥
(請(qǐng)將你認(rèn)為正確的命題前的序號(hào)全部填入題后橫線(xiàn)上,少填、填錯(cuò)均不得分).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•黃埔區(qū)一模)對(duì)于函數(shù)y=f(x)與常數(shù)a,b,若f(2x)=af(x)+b恒成立,則稱(chēng)(a,b)為函數(shù)f(x)的一個(gè)“P數(shù)對(duì)”;若f(2x)≥af(x)+b恒成立,則稱(chēng)(a,b)為函數(shù)f(x)的一個(gè)“類(lèi)P數(shù)對(duì)”.設(shè)函數(shù)f(x)的定義域?yàn)镽+,且f(1)=3.
(1)若(1,1)是f(x)的一個(gè)“P數(shù)對(duì)”,求f(2n)(n∈N*);
(2)若(-2,0)是f(x)的一個(gè)“P數(shù)對(duì)”,且當(dāng)x∈[1,2)時(shí)f(x)=k-|2x-3|,求f(x)在區(qū)間[1,2n)(n∈N*)上的最大值與最小值;
(3)若f(x)是增函數(shù),且(2,-2)是f(x)的一個(gè)“類(lèi)P數(shù)對(duì)”,試比較下列各組中兩個(gè)式子的大小,并說(shuō)明理由.
①f(2-n)與2-n+2(n∈N*);
②f(x)與2x+2(x∈(0,1]).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(選作題)定義在(-1,1)上的函數(shù)y=f(x)滿(mǎn)足:對(duì)任意x,y∈(-1,1)都有f(x)+f(y)=f(
x+y
1+xy
)

(1)判斷函數(shù)f(x)的奇偶性,并證明;
(2)如果當(dāng)x∈(-1,0)時(shí),有f(x)>0,求證:f(x)在(-1,1)上是單調(diào)遞減函數(shù);
(3)在(2)的條件下解不等式:f(x+
1
2
)+f(
1
1-x
)>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義域是全體實(shí)數(shù)的函數(shù)y=f(x)滿(mǎn)足f(x+2π)=f(x),且函數(shù)g(x)=
f(x)+f(-x)
2
,函數(shù)h(x)=
f(x)-f(-x)
2
.現(xiàn)定義函數(shù)p(x),q(x)為:p(x)=
g(x)-g(x+π)
2cosx
(x≠kπ+
π
2
)
0         (x=kπ+
π
2
)
,q(x)=
h(x)+h(x+π)
2sin2x
(x≠
2
)
0      (x=
2
)
,其中k∈Z,那么下列關(guān)于p(x),q(x)敘述正確的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)y=f(x)是定義域?yàn)镽 的奇函數(shù),且滿(mǎn)足f(x-2)=-f(x)對(duì)一切x∈R恒成立,當(dāng)

-1≤x≤1時(shí),f(x)=x3。則下列四個(gè)命題:①f(x)是以4為周期的周期函數(shù);②f(x)在[1,3]上的解析式為f(x)=(2-x)3;③f(x)在處的切線(xiàn)方程為3x+4y-5=0;④f(x)的圖像的對(duì)稱(chēng)軸中有x=±1.其中正確的命題是          (    )

       A.① ② ③    B.② ③  ④     C.① ③ ④       D.① ② ③ ④

查看答案和解析>>

同步練習(xí)冊(cè)答案