分析 直線與橢圓聯(lián)立,得(2k2+1)x2+(4k-4k2)x+2k2-4k-2=0,利用根的判別式能求出直線y=kx-k+1與橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1的交點個數(shù).
解答 解:聯(lián)立$\left\{\begin{array}{l}{y=kx-k+1}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1}\end{array}\right.$,得(2k2+1)x2+(4k-4k2)x+2k2-4k-2=0,
△=(4k-4k2)2-4(2k2+1)(2k2-4k-2)
=24k2-16k+8
=24(k-$\frac{1}{3}$)2+$\frac{16}{3}$>0,
∴直線y=kx-k+1與橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1的交點個數(shù)有2個.
故答案為:2.
點評 本題考查直線與橢圓的交點個數(shù)的求法,是基礎題,解題時要認真審題,注意根的判別式的合理運用.
科目:高中數(shù)學 來源: 題型:選擇題
A. | -1 | B. | 1 | C. | -9 | D. | 9 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4 | B. | -4 | C. | -$\frac{5}{2}$ | D. | $\frac{7}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 13 | B. | 14 | C. | 15 | D. | 16 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -1 | B. | l | C. | i | D. | -i |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com