2.直線y=kx-k+1與橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1的交點個數(shù)有2個.

分析 直線與橢圓聯(lián)立,得(2k2+1)x2+(4k-4k2)x+2k2-4k-2=0,利用根的判別式能求出直線y=kx-k+1與橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1的交點個數(shù).

解答 解:聯(lián)立$\left\{\begin{array}{l}{y=kx-k+1}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1}\end{array}\right.$,得(2k2+1)x2+(4k-4k2)x+2k2-4k-2=0,
△=(4k-4k22-4(2k2+1)(2k2-4k-2)
=24k2-16k+8
=24(k-$\frac{1}{3}$)2+$\frac{16}{3}$>0,
∴直線y=kx-k+1與橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1的交點個數(shù)有2個.
故答案為:2.

點評 本題考查直線與橢圓的交點個數(shù)的求法,是基礎題,解題時要認真審題,注意根的判別式的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

4.若$\underset{lim}{t→0}$$\frac{f({x}_{0}-3t)-f({x}_{0})}{t}$=3,則f′(x0)=( 。
A.-1B.1C.-9D.9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.在平面上有A、B、C三點,滿足|$\overrightarrow{AB}$|=|$\overrightarrow{AC}$|=1,|$\overrightarrow{BC}$|=$\sqrt{3}$,則$\overrightarrow{AB}$•$\overrightarrow{BC}$+$\overrightarrow{BC}$•$\overrightarrow{CA}$+$\overrightarrow{CA}$•$\overrightarrow{AB}$的值為(  )
A.4B.-4C.-$\frac{5}{2}$D.$\frac{7}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知橢圓的中心為坐標原點O,它的短軸長為$2\sqrt{2}$,一個焦點F的坐標為(c,0)(c>0),一個定點A的坐標為$({\frac{10}{c}-c,0})$且$\overrightarrow{OF}=2\overrightarrow{FA}$.
(1)求橢圓的標準方程;
(2)已知過焦點F的直線交橢圓于P,Q兩點.
①若OP⊥OQ,求直線PQ的斜率;
②若直線PQ的斜率為1,在線段OF之間是否存在一個點M(x0,0),使得以MP,MQ為鄰邊構(gòu)成的平行四邊形為菱形,若存在,求出M點的坐標;不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.設F1、F2分別是橢圓$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{16}$=1的左、右焦點,P為橢圓上任一點,點M的坐標為(6,4),則|PM|+|PF1|的最大值為( 。
A.13B.14C.15D.16

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,短軸的一個端點到焦點的距離為$\sqrt{2}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)是否存在過橢圓C的左焦點F且不與x軸重合的直線m,與橢圓C交于M,N兩點,線段MN的垂直平分線與x軸交于點P,與橢圓C交于點Q,使得四邊形MPNQ為菱形?若存在,請求出直線m的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左,右焦點分別為F1,F(xiàn)2,且|F1F2|=6,直線y=kx與橢圓交于A,B兩點.
(Ⅰ)若△AF1F2的周長為16,求橢圓的標準方程;
(Ⅱ)若$k=\frac{{\sqrt{2}}}{4}$,且A,B,F(xiàn)1,F(xiàn)2四點共圓,求橢圓離心率e的值;
(Ⅲ) 在(Ⅱ)的條件下,設P(x0,y0)為橢圓上一點,且直線PA的斜率k1∈(-2,-1),試求直線PB的斜率k2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知對稱中心在原點的橢圓的一個焦點與圓x2+y2-2$\sqrt{2}$x=0的圓心重合,且橢圓過點($\sqrt{2}$,1).
(1)求橢圓的標準方程;
(2)過點P(0,1)的直線與該橢圓交于A,B兩點,O為坐標原點,若$\overrightarrow{AP}$=2$\overrightarrow{PB}$,求△AOB的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知z=$\frac{2+i}{1-2i}$(i為虛數(shù)單位),則復數(shù)z=( 。
A.-1B.lC.iD.-i

查看答案和解析>>

同步練習冊答案