【題目】已知命題:“,”,命題:“ ,”.若命題“”是真命題,則實(shí)數(shù)的取值范圍是( )

A. B.

C. D.

【答案】D

【解析】

當(dāng)命題為p真時(shí),此問題為恒成立問題,用最值法,轉(zhuǎn)化為當(dāng)x[1,2]時(shí),(x2amin0,可求出 a1,當(dāng)命題q為真時(shí),為二次方程有解問題,用“△”判斷,可得a≤﹣2a1,又命題“¬pq”是真命題,所以pq真,對(duì)a求交集,可求出實(shí)數(shù)a的范圍.

解:當(dāng)命題為p真時(shí),即:“x[1,2],x2a0“,即當(dāng)x[1,2]時(shí),(x2amin0,

又當(dāng)x1時(shí),x2a取最小值1a,

所以1a0

a1,

當(dāng)命題q為真時(shí),即:xR,x2+2ax+2a0

所以△=4a242a)≥0,

所以a≤﹣2,或a1,

又命題“¬pq”是真命題,

所以pq真,

即實(shí)數(shù)a的取值范圍是:a1,

故選:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市2011年至2017年新開樓盤的平均銷售價(jià)格(單位:千元/平方米)的統(tǒng)計(jì)數(shù)據(jù)如下表:

年份

2011

2012

2013

2014

2015

2016

2017

年份代號(hào)

1

2

3

4

5

6

7

銷售價(jià)格

3

3.4

3.7

4.5

4.9

5.3

6

(1)求關(guān)于x的線性回歸方程;

(2)利用(1)中的回歸方程,分析2011年至2017年該市新開樓盤平均銷售價(jià)格的變化情況,并預(yù)測該市2019年新開樓盤的平均銷售價(jià)格。

附:參考公式: ,,其中為樣本平均值。

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)判斷并證明的奇偶性;

2)用單調(diào)性的定義證明函數(shù)在其定義域上是增函數(shù);

3)若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為促進(jìn)農(nóng)業(yè)發(fā)展,加快農(nóng)村建設(shè),某地政府扶持興建了一批“超級(jí)蔬菜大棚”.為了解大棚的面積與年利潤之間的關(guān)系,隨機(jī)抽取了其中的7個(gè)大棚,并對(duì)當(dāng)年的利潤進(jìn)行統(tǒng)計(jì)整理后得到了如下數(shù)據(jù)對(duì)比表:

大棚面積(畝)

4.5

5.0

5.5

6.0

6.5

7.0

7.5

年利潤(萬元)

6

7

7.4

8.1

8.9

9.6

11.1

由所給數(shù)據(jù)的散點(diǎn)圖可以看出,各樣本點(diǎn)都分布在一條直線附近,并且有很強(qiáng)的線性相關(guān)關(guān)系.

(Ⅰ)求關(guān)于的線性回歸方程;

(Ⅱ)小明家的“超級(jí)蔬菜大棚”面積為8.0畝,估計(jì)小明家的大棚當(dāng)年的利潤為多少;

(Ⅲ)另外調(diào)查了近5年的不同蔬菜畝平均利潤(單位:萬元),其中無絲豆為:1.5,1.7,2.1,2.2,2.5;彩椒為:1.8,1.9,1.9,2.2,2.2,請(qǐng)分析種植哪種蔬菜比較好?

參考數(shù)據(jù): .

參考公式: , .

【答案】(Ⅰ).(Ⅱ)大約為11.442萬元.(Ⅲ)種植彩椒比較好.

【解析】試題分析】(I)利用回歸直線方程計(jì)算公式計(jì)算出回歸直線方程.(II)代入求得當(dāng)年利潤的估計(jì)值.(III)通過計(jì)算平均數(shù)和方差比較種植哪種蔬菜好.

試題解析】

(Ⅰ), ,

,

,

那么回歸方程為: .

(Ⅱ)將代入方程得

,即小明家的“超級(jí)大棚”當(dāng)年的利潤大約為11.442萬元.

(Ⅲ)近5年來,無絲豆畝平均利潤的平均數(shù)為,

方差 .

彩椒畝平均利潤的平均數(shù)為,

方差為 .

因?yàn)?/span>, ,∴種植彩椒比較好.

型】解答
結(jié)束】
19

【題目】如圖,四棱錐中, 為等邊三角形,且平面平面, , .

(Ⅰ)證明: ;

(Ⅱ)若棱錐的體積為,求該四棱錐的側(cè)面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在四棱錐中,底面是矩形,平面,.過的中點(diǎn)于點(diǎn),連接,.

(Ⅰ)證明:平面;

(Ⅱ)若平面與平面所成的銳二面角的余弦值為,求的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,若輸出的值為4,則判斷框中應(yīng)填入的條件是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),是奇函數(shù).

(1)求的值;

(2)證明:是區(qū)間上的減函數(shù);

(3)若,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了了解某城市居民用水量情況,我們抽取了100位居民某年的月均用水量(單位:噸)并對(duì)數(shù)據(jù)進(jìn)行處理,得到該100位居民月均用水量的頻率分布表,并繪制了頻率分布直方圖(部分?jǐn)?shù)據(jù)隱藏).

(1)確定表中的的值;

(2)在上述頻率分布直方圖中,求從左往右數(shù)第4個(gè)矩形的高度;

(3)在頻率分布直方圖中畫出頻率分布折線圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某海產(chǎn)品經(jīng)銷商調(diào)查發(fā)現(xiàn),該海產(chǎn)品每售出噸可獲利萬元,每積壓噸則虧損萬元.根據(jù)往年的數(shù)據(jù),得到年需求量的頻率分布直方圖如圖所示,將頻率視為概率.

(1)請(qǐng)補(bǔ)齊上的頻率分布直方圖,并依據(jù)該圖估計(jì)年需求量的平均數(shù);

(2)今年該經(jīng)銷商欲進(jìn)貨噸,以(單位:噸, )表示今年的年需求量,以(單位:萬元)表示今年銷售的利潤,試將表示為的函數(shù)解析式;并求今年的年利潤不少于萬元的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案