已知P為拋物線C:y2=4x上的一點(diǎn),F(xiàn)為拋物線C的焦點(diǎn),其準(zhǔn)線與x軸交于點(diǎn)N,直線NP與拋物線交于另一點(diǎn)Q,且|PF|=3|QF|,則點(diǎn)P坐標(biāo)為
 
分析:作出拋物線對(duì)應(yīng)的圖象,根據(jù)拋物線的定義建立條件關(guān)系,利用三點(diǎn)共線即可得到結(jié)論.
解答:解:∵y2=4x,
∴焦點(diǎn)坐標(biāo)F(1,0),準(zhǔn)線方程x=-1.
過(guò)P,Q分別作準(zhǔn)線的射影分別為A,B,
則由拋物線的定義可知:|PA|=|PF|,|QF|=|BQ|,
∵|PF|=3|QF|,
∴|AP|=3|QB|,
即|BN|=3|AN|,
∴P,Q的縱坐標(biāo)滿足yP=3yQ
設(shè)P(
y2
4
,y
),y≠0,
則Q(
y2
36
,
y
3
),
則N(-1,0),
∵N,Q,P三點(diǎn)共線,
y
y2
4
+1
=
y
3
y2
36
+1
,
解得y2=12,
∴y=±2
3
,
此時(shí)x=
y2
4
=
12
4
=3
,
即點(diǎn)P坐標(biāo)為(3,±2
3
),
故答案為:(3,±2
3
點(diǎn)評(píng):本題主要考查拋物線中點(diǎn)的坐標(biāo)的求法,根據(jù)拋物線的定義建立方程關(guān)系是解決本題的關(guān)鍵,綜合性較強(qiáng),難度較大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知P為拋物線y=x2上的動(dòng)點(diǎn),定點(diǎn)A(a,0)關(guān)于P點(diǎn)的對(duì)稱點(diǎn)是Q,
(1)求點(diǎn)Q的軌跡方程;
(2)若(1)中的軌跡與拋物線y=x2交于B、C兩點(diǎn),當(dāng)AB⊥AC時(shí),求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•嘉興一模)已知F為拋物線C:y2=4x焦點(diǎn),其準(zhǔn)線交x軸于點(diǎn)M,點(diǎn)N是拋物線C上一點(diǎn)
(Ⅰ)如圖1,若MN的中垂線恰好過(guò)焦點(diǎn)F,求點(diǎn)N的y軸的距離
(Ⅱ)如圖2,已知直線l交拋物線C于點(diǎn)P,Q,若在拋物線C上存在點(diǎn)R,使FPRQ為平行四邊形,試探究直線l是否過(guò)定點(diǎn)?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率e=
2
2
,且右焦點(diǎn)F到左準(zhǔn)線的距離為3.
(1)求橢圓C的方程;
(2)已知B為橢圓C在y軸的左測(cè)上一點(diǎn),線段BF與拋物線y2=2px(p>0)交于A,且滿足
AB
=2
FA
,求p的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知P為拋物線y=x2上的動(dòng)點(diǎn),定點(diǎn)A(a,0)關(guān)于P點(diǎn)的對(duì)稱點(diǎn)是Q.

(1)求點(diǎn)Q的軌跡方程;

(2)若(1)中的軌跡與拋物線y=x2交于B、C兩點(diǎn),當(dāng)AB⊥AC時(shí),求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年重慶一中高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

已知橢圓的離心率,且右焦點(diǎn)F到左準(zhǔn)線的距離為3.
(1)求橢圓C的方程;
(2)已知B為橢圓C在y軸的左測(cè)上一點(diǎn),線段BF與拋物線y2=2px(p>0)交于A,且滿足,求p的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案