(2013•虹口區(qū)一模)等差數(shù)列{an}前n項和為Sn.已知am-1+am+1-a2m=0,S2m-1=38,則m=
10
10
分析:利用等差數(shù)列的性質(zhì)an-1+an+1=2an,我們易求出am的值,再根據(jù)am為等差數(shù)列{an}的前2m-1項的中間項(平均項),我們可以構(gòu)造一個關(guān)于m的方程,解方程即可得到m的值.
解答:解:∵數(shù)列{an}為等差數(shù)列,∴an-1+an+1=2an
∵am-1+am+1-am2=0,∴2am-am2=0
解得:am=2,
又∵S2m-1=(2m-1)am=38,解得m=10
故答案為10.
點評:本題考查差數(shù)列的性質(zhì),關(guān)鍵利用等差數(shù)列項的性質(zhì):當(dāng)m+n=p+q時,am+an=ap+aq,同時利用了等差數(shù)列的前n和公式.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•虹口區(qū)一模)數(shù)列{an}滿足an=
n   ,當(dāng)n=2k-1
ak , 當(dāng)n=2k
,其中k∈N*,設(shè)f(n)=a1+a2+…+a2n-1+a2n,則f(2013)-f(2012)等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•虹口區(qū)一模)關(guān)于z的方程
.
1+i0z
-i
1
2
i
1-i0z
.
=2+i2013
(其中i是虛數(shù)單位),則方程的解z=
1-2i
1-2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•虹口區(qū)一模)在下面的程序框圖中,輸出的y是x的函數(shù),記為y=f(x),則f-1(
12
)
=
-1
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•虹口區(qū)一模)在△ABC中,AB=2
3
,AC=2,且∠B=
π
6
,則△ABC的面積為
3
或2
3
3
或2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•虹口區(qū)一模)如果函數(shù)y=f(x)的定義域為R,對于定義域內(nèi)的任意x,存在實數(shù)a使得f(x+a)=f(-x)成立,則稱此函數(shù)具有“P(a)性質(zhì)”.
(1)判斷函數(shù)y=sinx是否具有“P(a)性質(zhì)”,若具有“P(a)性質(zhì)”求出所有a的值;若不具有“P(a)性質(zhì)”,請說明理由.
(2)已知y=f(x)具有“P(0)性質(zhì)”,且當(dāng)x≤0時f(x)=(x+m)2,求y=f(x)在[0,1]上的最大值.
(3)設(shè)函數(shù)y=g(x)具有“P(±1)性質(zhì)”,且當(dāng)-
1
2
≤x≤
1
2
時,g(x)=|x|.若y=g(x)與y=mx交點個數(shù)為2013個,求m的值.

查看答案和解析>>

同步練習(xí)冊答案