精英家教網(wǎng)如圖,在正方體ABCD-A1B1C1D1中,M為CC1的中點(diǎn),AC交BD于點(diǎn)O,求證:A1O⊥平面MBD.
分析:利用線面垂直的判定定理證明DB⊥平面A1ACC1 ,證得A1O⊥DB.再用勾股定理證明A1O⊥OM,
這樣,A1O就垂直于平面MBD內(nèi)的兩條相交直線,故A1O⊥平面MBD.
解答:證明:連接MO.
∵DB⊥A1A,DB⊥AC,A1A∩AC=A,
∴DB⊥平面A1ACC1
又A1O?平面A1ACC1,∴A1O⊥DB.
在矩形A1ACC1中,tan∠AA1O=
2
2
,
tan∠MOC=
2
2
,∴∠AA1O=∠MOC,
則∠A1OA+∠MOC=90°.∴A1O⊥OM.
∵OM∩DB=O,∴A1O⊥平面MBD.
點(diǎn)評(píng):本題考查證明直線和平面垂直的方法,在其中一個(gè)平面內(nèi)找出2條相交直線和另一個(gè)平面垂直.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)若Rt△ABC中兩直角邊為a、b,斜邊c上的高為h,則
1
h2
=
1
a2
+
1
b2
,如圖,在正方體的一角上截取三棱錐P-ABC,PO為棱錐的高,記M=
1
PO2
,N=
1
PA2
+
1
PB2
+
1
PC2
,那么M、N的大小關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在正方體的一角上截取三棱錐P-ABC,PO為棱錐的高,記M=
1
PO2
,N=
1
PA2
+
1
PB2
+
1
PC2
,那么M,N的大小關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)若Rt△ABC中兩直角邊為a、b,斜邊c上的高為h,則
1
h2
=
1
a2
+
1
b2
,如圖,在正方體的一角上截取三棱錐P-ABC,PO為棱錐的高,類比平面幾何中的結(jié)論,得到此三棱錐中的一個(gè)正確結(jié)論為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在正方體ABCD-A1B1C1D1中,E為DD1的中點(diǎn),
(1)求證:AC⊥平面D1DB;
(2)BD1∥平面ABC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在正方體ABCD-A1B1C1D1中,點(diǎn)P是上底面A1B1C1D1內(nèi)一動(dòng)點(diǎn),則三棱錐P-ABC的主視圖與左視圖的面積的比值為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案