設(shè)F1和F2為雙曲線
的兩個焦點,點在雙曲線上且滿足
,則
的面積是( )。
A.1 | B. | C.2 | D. |
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖:在面積為1的D
PMN中,tanÐ
PMN=
,tanÐ
MNP=-2,試建立適當(dāng)?shù)淖鴺?biāo)系,求以
M、
N為焦點且過點
P的橢圓方程。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分14分)如圖,已知直線
OP1,
OP2為雙曲線
E:
的漸近線,△
P1OP2的面積為
,在雙曲線
E上存在點
P為線段
P1P2的一個三等分點,且雙曲線
E的離心率為
.
(1)若
P1、
P2點的橫坐標(biāo)分別為
x1、
x2,則
x1、
x2之間滿足怎樣的關(guān)系?并證明你的結(jié)論;
(2)求雙曲線
E的方程;
(3)設(shè)雙曲線
E上的動點
,兩焦點
,若
為鈍角,求
點橫坐標(biāo)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)
拋物線頂點在坐標(biāo)原點,焦點與橢圓
的右焦點
重合,過點
斜率為
的直線與拋物線交于
,
兩點.
(Ⅰ)求拋物線的方程;
(Ⅱ)求△
的面積.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題12分)已知橢圓
的離心率為
,
為橢圓的右焦點,
兩點在橢圓
上,且
,定點
。
(1)若
時,有
,求橢圓
的方程;
(2)在條件(1)所確定的橢圓
下,當(dāng)動直線
斜率為k,且設(shè)
時,試求
關(guān)于S的函數(shù)表達式f(s)的最大值,以及此時
兩點所在的直線方程。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
雙曲線
上有一點P到左準(zhǔn)線的距離為
,則P到右焦點的距離為
。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)
已知點F( 1,0),
與直線4x+3y + 1 =0相切,動圓M與
及y軸都相切. (I )求點M的軌跡C的方程;(II)過點F任作直線l,交曲線C于A,B兩點,由點A,B分別向
各引一條切線,切點 分別為P,Q,記
.求證
是定值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分13分)
如圖,已知橢圓
的焦點為
、
,離心率為
,過點
的直線
交橢圓
于
、
兩點.
(1)求橢圓
的方程;
(2)①求直線
的斜率
的取值范圍;
②在直線
的斜率
不斷變化過程中,探究
和
是否總相等?若相等,請給出證明,若不相等,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
若橢圓長軸長與短軸長之比為2,它的一個焦點是(2
,0),則橢圓的標(biāo)準(zhǔn)方程是
查看答案和解析>>