(本小題滿分12分)
已知點F( 1,0),
與直線4x+3y + 1 =0相切,動圓M與
及y軸都相切. (I )求點M的軌跡C的方程;(II)過點F任作直線l,交曲線C于A,B兩點,由點A,B分別向
各引一條切線,切點 分別為P,Q,記
.求證
是定值.
(I )
;(II) 當不與
軸垂直時,直線的方程為
,由
得
,設
,
∴
,
當與
軸垂直時,也可得
。
試題分析:(Ⅰ)⊙
的半徑為
,⊙
的方程為
,
作
⊥
軸于
,則
,即
,則
(
是過
作直線
的垂線的垂足),則點
的軌跡是以
為焦點,
為準線的拋物線.
∴點
的軌跡
的方程為
; …6分
(Ⅱ)當不與
軸垂直時,直線的方程為
,由
得
,設
,則
∴
,
當與
軸垂直時,也可得
,
綜上,有
. …12分
點評:(1)在設直線方程的點斜式時,要注意討論斜率是否存在;(2)做第二問的關鍵是:把
的值用兩根之和或兩根之積表述出,從而達到應用韋達定理的目的。
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:填空題
已知橢圓
的右焦點為
,
點在橢圓上,以
點為圓心的圓與
軸相切,且同時與
軸相切于橢圓的右焦點
,則橢圓
的離心率為
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
雙曲線的實軸長、虛軸長與焦距的和為8,則半焦距的取值范圍是 (答案用區(qū)間表示)
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
設F1和F2為雙曲線
的兩個焦點,點在雙曲線上且滿足
,則
的面積是( )。
A.1 | B. | C.2 | D. |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知點
的坐標分別是
,直線
相交于點
,且直線
與直線
的斜率之差是
,則點
的軌跡方程是( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知拋物線
的準線
與雙曲線
相切,則雙曲線
的離心率
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
求下列各曲線的標準方程
(Ⅰ)實軸長為12,離心率為
,焦點在x軸上的橢圓;
(Ⅱ)拋物線的焦點是雙曲線
的左頂點.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
討論方程
(
)所表示的曲線類型.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓的兩個焦點分別為
,離心率
。
(1)求橢圓方程;
(2)一條不與坐標軸平行的直線l與橢圓交于不同的兩點M、N,且線段MN中點的橫坐標為–
,求直線l傾斜角的取值范圍。
查看答案和解析>>