【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)x(單位:千元)對(duì)年銷售量y(單位:t)和年利潤(rùn)z(單位:千元)的影響,對(duì)近8年的年宣傳費(fèi)和年銷售量=1,2,···,8)數(shù)據(jù)作了初步處理,得到下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.








46.6

56.3

6.8

289.8

1.6

1469

108.8

表中,=

)根據(jù)散點(diǎn)圖判斷,y=a+bxy=c+d哪一個(gè)適宜作為年銷售量y關(guān)于年宣傳費(fèi)x的回歸方程類型?(給判斷即可,不必說明理由)

)根據(jù)()的判斷結(jié)果及表中數(shù)據(jù),建立y關(guān)于x的回歸方程;

)已知這種產(chǎn)品的年利率zx、y的關(guān)系為z=0.2y-x.根據(jù)()的結(jié)果回答下列問題:

)年宣傳費(fèi)x=49時(shí),年銷售量及年利潤(rùn)的預(yù)報(bào)值是多少?

)年宣傳費(fèi)x為何值時(shí),年利率的預(yù)報(bào)值最大?

附:對(duì)于一組數(shù)據(jù),,……,,其回歸線的斜率和截距的最小二乘估計(jì)分別為:

【答案】;(;()(ⅰ);(ⅱ)46.24

【解析】

)由散點(diǎn)圖可以判斷,適合作為年銷售關(guān)于年宣傳費(fèi)用的回歸方程類型.

)令,先建立關(guān)于的線性回歸方程,由于=

=563-68×6.8=100.6.

關(guān)于的線性回歸方程為,

關(guān)于的回歸方程為.

)()由()知,當(dāng)=49時(shí),年銷售量的預(yù)報(bào)值

=576.6,

.

)根據(jù)()的結(jié)果知,年利潤(rùn)z的預(yù)報(bào)值

,

當(dāng)=,即時(shí),取得最大值.

故宣傳費(fèi)用為46.24千元時(shí),年利潤(rùn)的預(yù)報(bào)值最大.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖甲,ADBC是等腰梯形CDEF的兩條高,,點(diǎn)M是線段AE的中點(diǎn),將該等腰梯形沿著兩條高AD,BC折疊成如圖乙所示的四棱錐P-ABCDE,F重合,記為點(diǎn)P.

1)求證:;

2)求點(diǎn)M到平面BDP距離h.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直三棱柱中,,

1)求異面直線所成角的正切值;

2)求直線與平面所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某購(gòu)物商場(chǎng)分別推出支付寶和微信掃碼支付購(gòu)物活動(dòng),活動(dòng)設(shè)置了一段時(shí)間的推廣期,由于推廣期內(nèi)優(yōu)惠力度較大,吸引越來越多的人開始使用掃碼支付.現(xiàn)統(tǒng)計(jì)了活動(dòng)剛推出一周內(nèi)每天使用掃碼支付的人次,用表示活動(dòng)推出的天數(shù),表示每天使用掃碼支付的人次,統(tǒng)計(jì)數(shù)據(jù)如下表所示:

1)根據(jù)散點(diǎn)圖判斷,在推廣期內(nèi),掃碼支付的人次關(guān)于活動(dòng)推出天數(shù)的回歸方程適合用來表示,求出該回歸方程,并預(yù)測(cè)活動(dòng)推出第天使用掃碼支付的人次;

2)推廣期結(jié)束后,商場(chǎng)對(duì)顧客的支付方式進(jìn)行統(tǒng)計(jì),結(jié)果如下表:

支付方式

現(xiàn)金

會(huì)員卡

掃碼

比例

商場(chǎng)規(guī)定:使用現(xiàn)金支付的顧客無優(yōu)惠,使用會(huì)員卡支付的顧客享受折優(yōu)惠,掃碼支付的顧客隨機(jī)優(yōu)惠,根據(jù)統(tǒng)計(jì)結(jié)果得知,使用掃碼支付的顧客,享受折優(yōu)惠的概率為,享受折優(yōu)惠的概率為,享受折優(yōu)惠的概率為.現(xiàn)有一名顧客購(gòu)買了元的商品,根據(jù)所給數(shù)據(jù)用事件發(fā)生的頻率來估計(jì)相應(yīng)事件發(fā)生的概率,估計(jì)該顧客支付的平均費(fèi)用是多少?

參考數(shù)據(jù):設(shè),,

參考公式:對(duì)于一組數(shù)據(jù),,,,其回歸直線的斜率和截距的最小二乘估計(jì)公式分別為:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】齊王有上等,中等,下等馬各一匹;田忌也有上等,中等,下等馬各一匹.田忌的上等馬優(yōu)于齊王的中等馬,劣于齊王的上等馬;田忌的中等馬優(yōu)于齊王的下等馬,劣于齊王的中等馬;田忌的下等馬劣于齊王的下等馬.現(xiàn)從雙方的馬匹中隨機(jī)各選一匹進(jìn)行一場(chǎng)比賽,若有優(yōu)勢(shì)的馬一定獲勝,則齊王的馬獲勝的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,圓,動(dòng)圓P與圓M外切并且與圓N內(nèi)切,圓心P的軌跡為曲線C.

1)求曲線C的方程;

2)設(shè)不經(jīng)過點(diǎn)的直線l與曲線C相交于A,B兩點(diǎn),直線QA與直線QB的斜率均存在且斜率之和為-2,證明:直線l過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以下四個(gè)命題:

,則的逆否命題為真命題

函數(shù)在區(qū)間上為增函數(shù)的充分不必要條件

③若為假命題,則,均為假命題

④對(duì)于命題,,則為:,

其中真命題的個(gè)數(shù)是(

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了了解高一年級(jí)學(xué)生學(xué)習(xí)數(shù)學(xué)的狀態(tài),從期中考試成績(jī)中隨機(jī)抽取50名學(xué)生的數(shù)學(xué)成績(jī),按成績(jī)分組:第1,第2,第3,第4,第5,得到的頻率分布直方圖如圖所示.

(1)由頻率分布直方圖,估計(jì)這50名學(xué)生數(shù)學(xué)成績(jī)的中位數(shù)和平均數(shù)(保留到0.01);

(2)該校高一年級(jí)共有1000名學(xué)生,若本次考試成績(jī)90分以上(含90分)為優(yōu)秀等次,則根據(jù)頻率分布直方圖估計(jì)該校高一學(xué)生數(shù)學(xué)成績(jī)達(dá)到優(yōu)秀等次的人數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】魯班鎖是中國(guó)傳統(tǒng)的智力玩具,起源于古代漢族建筑中首創(chuàng)的榫卯結(jié)構(gòu),這種三維的拼插器具內(nèi)部的凹凸部分(即榫卯結(jié)構(gòu))嚙合,十分巧妙,外觀看是嚴(yán)絲合縫的十字立方體,其上下、左右、前后完全對(duì)稱,從外表上看,六根等長(zhǎng)的正四棱柱分成三組,經(jīng)榫卯起來,如圖,若正四棱柱的高為,底面正方形的邊長(zhǎng)為,現(xiàn)將該魯班鎖放進(jìn)一個(gè)球形容器內(nèi),則該球形容器的表面積的最小值為( )(容器壁的厚度忽略不計(jì))

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案