已知△ABC的周長(zhǎng)為20,且頂點(diǎn)B (0,-4),C (0,4),則頂點(diǎn)A的軌跡方程是( )
A.(x≠0)
B.(x≠0)
C.(x≠0)
D.(x≠0)
【答案】分析:根據(jù)三角形的周長(zhǎng)和定點(diǎn),得到點(diǎn)A到兩個(gè)定點(diǎn)的距離之和等于定值,得到點(diǎn)A的軌跡是橢圓,橢圓的焦點(diǎn)在y軸上,寫(xiě)出橢圓的方程,去掉不合題意的點(diǎn).
解答:解:∵△ABC的周長(zhǎng)為20,頂點(diǎn)B (0,-4),C (0,4),
∴BC=8,AB+AC=20-8=12,
∵12>8
∴點(diǎn)A到兩個(gè)定點(diǎn)的距離之和等于定值,
∴點(diǎn)A的軌跡是橢圓,
∵a=6,c=4
∴b2=20,
∴橢圓的方程是
故選B.
點(diǎn)評(píng):本題考查橢圓的定義,注意橢圓的定義中要檢驗(yàn)兩個(gè)線段的大小,看能不能構(gòu)成橢圓,本題是一個(gè)易錯(cuò)題,容易忽略掉不合題意的點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,三角A,B,C所對(duì)的邊分別為a,b,c.已知△ABC的周長(zhǎng)為
2
+1
,且sinA+sinB=
2
sinC

(Ⅰ)求邊c的長(zhǎng);
(Ⅱ)若△ABC的面積為
1
6
sinC
,求角C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的周長(zhǎng)為6,三邊長(zhǎng)BC,CA,AB構(gòu)成等差數(shù)列,則
BA
BC
的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的周長(zhǎng)為6,且
3
cos
A+B
2
=sinC

(1)求角C;
(2)求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的周長(zhǎng)為6,|
BC
|,|
CA
|,|
AB
|
依次為a,b,c,成等比數(shù)列.
(1)求證:0<B≤
π
3

(2)求△ABC的面積S的最大值;
(3)求
BA
BC
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的周長(zhǎng)為18,若sinA:sinB:sinC=2:3:4,則此三角形中最大邊的長(zhǎng)為
8
8

查看答案和解析>>

同步練習(xí)冊(cè)答案