邊長為2的正方形ABCD所在平面外有一點P,平面ABCD,,E是PC上的一點.
(Ⅰ)求證:AB//平面;
(Ⅱ)求證:平面平面;
(Ⅲ)線段為多長時,平面?
(1)利用直線與平面平行的判定定理直接證明AB∥平面PCD.
( 2)通過證明PA⊥BD,結(jié)合PA∩AC=A,推出BD⊥平面PAC,然后證明平面BDE⊥平面PAC.
( 3)
【解析】
試題分析:解:(Ⅰ)證明:正方形ABCD中, AB//,又AB平面,平面
所以AB//平面 3分
(Ⅱ)證明:正方形ABCD中,,
平面ABCD,平面ABCD,, 5分
又,所以平面, 6分
平面,平面平面 8分
(Ⅲ)由(Ⅱ)可知,所以只需可證平面,
在中,可求,,,
12分
考點:直線與平面平行,面面垂直
點評:本題考查直線與平面平行,平面與平面垂直的證明,考查空間想象能力.
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
| ||
2 |
1 |
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com